These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 32903381)

  • 1. Prediction of Anticancer Peptides Using a Low-Dimensional Feature Model.
    Li Q; Zhou W; Wang D; Wang S; Li Q
    Front Bioeng Biotechnol; 2020; 8():892. PubMed ID: 32903381
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ACP-DA: Improving the Prediction of Anticancer Peptides Using Data Augmentation.
    Chen XG; Zhang W; Yang X; Li C; Chen H
    Front Genet; 2021; 12():698477. PubMed ID: 34276801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. G-ACP: a machine learning approach to the prediction of therapeutic peptides for gastric cancer.
    Azad H; Akbar MY; Sarfraz J; Haider W; Riaz MN; Ali GM; Ghazanfar S
    J Biomol Struct Dyn; 2024 Mar; ():1-14. PubMed ID: 38450672
    [TBL] [Abstract][Full Text] [Related]  

  • 4. mACPpred: A Support Vector Machine-Based Meta-Predictor for Identification of Anticancer Peptides.
    Boopathi V; Subramaniyam S; Malik A; Lee G; Manavalan B; Yang DC
    Int J Mol Sci; 2019 Apr; 20(8):. PubMed ID: 31013619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CACPP: A Contrastive Learning-Based Siamese Network to Identify Anticancer Peptides Based on Sequence Only.
    Yang X; Jin J; Wang R; Li Z; Wang Y; Wei L
    J Chem Inf Model; 2024 Apr; 64(7):2807-2816. PubMed ID: 37252890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Incorporating support vector machine with sequential minimal optimization to identify anticancer peptides.
    Wan Y; Wang Z; Lee TY
    BMC Bioinformatics; 2021 May; 22(1):286. PubMed ID: 34051755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of anticancer peptides based on an ensemble model of deep learning and machine learning using ordinal positional encoding.
    Yuan Q; Chen K; Yu Y; Le NQK; Chua MCH
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36642410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AntiMF: A deep learning framework for predicting anticancer peptides based on multi-view feature extraction.
    Liu J; Li M; Chen X
    Methods; 2022 Nov; 207():38-43. PubMed ID: 36100141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of Anticancer Peptides with High Efficacy and Low Toxicity by Hybrid Model Based on 3D Structure of Peptides.
    Zhao Y; Wang S; Fei W; Feng Y; Shen L; Yang X; Wang M; Wu M
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34073203
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ACP-ML: A sequence-based method for anticancer peptide prediction.
    Bian J; Liu X; Dong G; Hou C; Huang S; Zhang D
    Comput Biol Med; 2024 Mar; 170():108063. PubMed ID: 38301519
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ACPPfel: Explainable deep ensemble learning for anticancer peptides prediction based on feature optimization.
    Liu M; Wu T; Li X; Zhu Y; Chen S; Huang J; Zhou F; Liu H
    Front Genet; 2024; 15():1352504. PubMed ID: 38487252
    [No Abstract]   [Full Text] [Related]  

  • 12. Comprehensive Review and Comparison for Anticancer Peptides Identification Models.
    Song X; Zhuang Y; Lan Y; Lin Y; Min X
    Curr Protein Pept Sci; 2020 Jan; ():. PubMed ID: 31957608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ACPred-Fuse: fusing multi-view information improves the prediction of anticancer peptides.
    Rao B; Zhou C; Zhang G; Su R; Wei L
    Brief Bioinform; 2020 Sep; 21(5):1846-1855. PubMed ID: 31729528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MLACP: machine-learning-based prediction of anticancer peptides.
    Manavalan B; Basith S; Shin TH; Choi S; Kim MO; Lee G
    Oncotarget; 2017 Sep; 8(44):77121-77136. PubMed ID: 29100375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ACPred: A Computational Tool for the Prediction and Analysis of Anticancer Peptides.
    Schaduangrat N; Nantasenamat C; Prachayasittikul V; Shoombuatong W
    Molecules; 2019 May; 24(10):. PubMed ID: 31121946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effective identification and differential analysis of anticancer peptides.
    Zhang L; Hu X; Xiao K; Kong L
    Biosystems; 2024 Jul; 241():105246. PubMed ID: 38848816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EnACP: An Ensemble Learning Model for Identification of Anticancer Peptides.
    Ge R; Feng G; Jing X; Zhang R; Wang P; Wu Q
    Front Genet; 2020; 11():760. PubMed ID: 32903636
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ACP_MS: prediction of anticancer peptides based on feature extraction.
    Zhou C; Peng D; Liao B; Jia R; Wu F
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36326080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Survey of In-silico Prediction of Anticancer Peptides.
    Ye N
    Curr Top Med Chem; 2021; 21(15):1310-1318. PubMed ID: 34126901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ACPred-BMF: bidirectional LSTM with multiple feature representations for explainable anticancer peptide prediction.
    Han B; Zhao N; Zeng C; Mu Z; Gong X
    Sci Rep; 2022 Dec; 12(1):21915. PubMed ID: 36535969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.