These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 32903390)

  • 21. Dioxygenases of Chlorobiphenyl-Degrading Species Rhodococcus wratislaviensis G10 and Chlorophenol-Degrading Species Rhodococcus opacus 1CP Induced in Benzoate-Grown Cells and Genes Potentially Involved in These Processes.
    Solyanikova IP; Borzova OV; Emelyanova EV; Shumkova ES; Prisyazhnaya NV; Plotnikova EG; Golovleva LA
    Biochemistry (Mosc); 2016 Sep; 81(9):986-98. PubMed ID: 27682171
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Insights into the biodegradation of polycaprolactone through genomic analysis of two plastic-degrading
    Zampolli J; Vezzini D; Brocca S; Di Gennaro P
    Front Microbiol; 2023; 14():1284956. PubMed ID: 38235436
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Removal of xylene by a mixed culture of Pseudomonas sp. NBM21 and Rhodococcus sp. BTO62 in biofilter.
    Jeong E; Hirai M; Shoda M
    J Biosci Bioeng; 2009 Aug; 108(2):136-41. PubMed ID: 19619861
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Temperature effects and substrate interactions during the aerobic biotransformation of BTEX mixtures by toluene-enriched consortia and Rhodococcus rhodochrous.
    Deeb RA; Alvarez-Cohen L
    Biotechnol Bioeng; 1999 Mar; 62(5):526-36. PubMed ID: 10099561
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Regioselective oxidation of xylene isomers by Rhodococcus sp. strain DK17.
    Kim D; Kim YS; Jung JW; Zylstra GJ; Kim YM; Kim SK; Kim E
    FEMS Microbiol Lett; 2003 Jun; 223(2):211-4. PubMed ID: 12829288
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Regiospecificity of two multicomponent monooxygenases from Pseudomonas stutzeri OX1: molecular basis for catabolic adaptation of this microorganism to methylated aromatic compounds.
    Cafaro V; Notomista E; Capasso P; Di Donato A
    Appl Environ Microbiol; 2005 Aug; 71(8):4736-43. PubMed ID: 16085870
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Isolation and characterization of benzene-tolerant Rhodococcus opacus strains.
    Na KS; Kuroda A; Takiguchi N; Ikeda T; Ohtake H; Kato J
    J Biosci Bioeng; 2005 Apr; 99(4):378-82. PubMed ID: 16233805
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rhodococcus opacus expresses the xsc gene to utilize taurine as a carbon source or as a nitrogen source but not as a sulfur source.
    Denger K; Ruff J; Schleheck D; Cook AM
    Microbiology (Reading); 2004 Jun; 150(Pt 6):1859-1867. PubMed ID: 15184572
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genetic and biochemical characterization of the dioxygenase involved in lateral dioxygenation of dibenzofuran from Rhodococcus opacus strain SAO101.
    Kimura N; Kitagawa W; Mori T; Nakashima N; Tamura T; Kamagata Y
    Appl Microbiol Biotechnol; 2006 Nov; 73(2):474-84. PubMed ID: 16736088
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular and biochemical characterization of two meta-cleavage dioxygenases involved in biphenyl and m-xylene degradation by Beijerinckia sp. strain B1.
    Kim E; Zylstra GJ
    J Bacteriol; 1995 Jun; 177(11):3095-103. PubMed ID: 7768806
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A new modified ortho cleavage pathway of 3-chlorocatechol degradation by Rhodococcus opacus 1CP: genetic and biochemical evidence.
    Moiseeva OV; Solyanikova IP; Kaschabek SR; Gröning J; Thiel M; Golovleva LA; Schlömann M
    J Bacteriol; 2002 Oct; 184(19):5282-92. PubMed ID: 12218013
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Alternative Naphthalene Metabolic Pathway Includes Formation of ortho-Phthalic Acid and Cinnamic Acid Derivatives in the Rhodococcus opacus Strain 3D.
    Anokhina TO; Esikova TZ; Gafarov AB; Polivtseva VN; Baskunov BP; Solyanikova IP
    Biochemistry (Mosc); 2020 Mar; 85(3):355-368. PubMed ID: 32564740
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Specificity of
    Emelyanova EV; Solyanikova IP
    Front Biosci (Elite Ed); 2022 Jun; 14(2):15. PubMed ID: 35730456
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Combined Omics Approach Reveals Key Differences between Aerobic and Microaerobic Xylene-Degrading Enrichment Bacterial Communities:
    Táncsics A; Banerjee S; Soares A; Bedics A; Kriszt B
    Environ Sci Technol; 2023 Feb; 57(7):2846-2855. PubMed ID: 36752053
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Intradiol pathway of para-cresol conversion by Rhodococcus opacus 1CP.
    Kolomytseva MP; Baskunov BP; Golovleva LA
    Biotechnol J; 2007 Jul; 2(7):886-93. PubMed ID: 17506026
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analysis of the biodegradative and adaptive potential of the novel polychlorinated biphenyl degrader
    Garrido-Sanz D; Sansegundo-Lobato P; Redondo-Nieto M; Suman J; Cajthaml T; Blanco-Romero E; Martin M; Uhlik O; Rivilla R
    Microb Genom; 2020 Apr; 6(4):. PubMed ID: 32238227
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of the naphthalene-degrading bacterium, Rhodococcus opacus M213.
    Uz I; Duan YP; Ogram A
    FEMS Microbiol Lett; 2000 Apr; 185(2):231-8. PubMed ID: 10754253
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Removal of o-xylene using biofilter inoculated with Rhodococcus sp. BTO62.
    Jeong E; Hirai M; Shoda M
    J Hazard Mater; 2008 Mar; 152(1):140-7. PubMed ID: 17681689
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparative Genomics and Metabolic Analysis Reveals Peculiar Characteristics of Rhodococcus opacus Strain M213 Particularly for Naphthalene Degradation.
    Pathak A; Chauhan A; Blom J; Indest KJ; Jung CM; Stothard P; Bera G; Green SJ; Ogram A
    PLoS One; 2016; 11(8):e0161032. PubMed ID: 27532207
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mutation of glutamic acid 103 of toluene o-xylene monooxygenase as a means to control the catabolic efficiency of a recombinant upper pathway for degradation of methylated aromatic compounds.
    Cafaro V; Notomista E; Capasso P; Di Donato A
    Appl Environ Microbiol; 2005 Aug; 71(8):4744-50. PubMed ID: 16085871
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.