These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 3290347)

  • 21. Prospective treatment planning to improve locoregional hyperthermia for oesophageal cancer.
    Kok HP; van Haaren PM; van de Kamer JB; Zum Vörde Sive Vörding PJ; Wiersma J; Hulshof MC; Geijsen ED; van Lanschot JJ; Crezee J
    Int J Hyperthermia; 2006 Aug; 22(5):375-89. PubMed ID: 16891240
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of hyperthermia on bone. II. Heating of bone in vivo and stimulation of bone growth.
    Leon SA; Asbell SO; Arastu HH; Edelstein G; Packel AJ; Sheehan S; Daskal I; Guttmann GG; Santos I
    Int J Hyperthermia; 1993; 9(1):77-87. PubMed ID: 8433028
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Direct computation of ultrasound phased-array driving signals from a specified temperature distribution for hyperthermia.
    McGough RJ; Ebbini ES; Cain CA
    IEEE Trans Biomed Eng; 1992 Aug; 39(8):825-35. PubMed ID: 1505996
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Use of insulation to reduce extremity temperature nonuniformity during whole body hyperthermia in dogs.
    Thrall DE; Page RL; McLeod DA
    Cancer Res; 1987 Nov; 47(22):5880-2. PubMed ID: 3664488
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Treatable domain and optimal frequency for brain tumors during ultrasound hyperthermia.
    Lin WL; Liauh CT; Yen JY; Chen YY; Shieh MJ
    Int J Radiat Oncol Biol Phys; 2000 Jan; 46(1):239-47. PubMed ID: 10656398
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Three-dimensional spatial and temporal temperature imaging in gel phantoms using backscattered ultrasound.
    Anand A; Savéry D; Hall C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Jan; 54(1):23-31. PubMed ID: 17225797
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Two-dimensional acoustic attenuation mapping of high-temperature interstitial ultrasound lesions.
    Tyréus PD; Diederich C
    Phys Med Biol; 2004 Feb; 49(4):533-46. PubMed ID: 15005163
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reconstruction of the temperature field for inverse ultrasound hyperthermia calculations at a muscle/bone interface.
    Liauh CT; Shih TC; Huang HW; Lin WL
    Med Phys; 2004 Feb; 31(2):208-17. PubMed ID: 15000606
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Theoretical and experimental evaluation of a temperature controller for scanned focused ultrasound hyperthermia.
    Lin WL; Roemer RB; Hynynen K
    Med Phys; 1990; 17(4):615-25. PubMed ID: 2215406
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High intensity focused ultrasound induced in vivo large volume hyperthermia under 3D MRI temperature control.
    Tillander M; Hokland S; Koskela J; Dam H; Andersen NP; Pedersen M; Tanderup K; Ylihautala M; Köhler M
    Med Phys; 2016 Mar; 43(3):1539-49. PubMed ID: 26936737
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Experimental evaluation of two simple thermal models using hyperthermia in muscle in vivo.
    Moros EG; Dutton AW; Roemer RB; Burton M; Hynynen K
    Int J Hyperthermia; 1993; 9(4):581-98. PubMed ID: 8366307
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An analytic derivation for the transient temperature rise during an ultrasound pulse focused on bone.
    Herman BA; Myers MR
    Ultrasound Med Biol; 2003 May; 29(5):771-3. PubMed ID: 12754077
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A scanned, focused, multiple transducer ultrasonic system for localized hyperthermia treatments.
    Hynynen K; Roemer R; Anhalt D; Johnson C; Xu ZX; Swindell W; Cetas T
    Int J Hyperthermia; 1987; 3(1):21-35. PubMed ID: 3559296
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A numerical study of rapid heating for high temperature radio frequency hyperthermia.
    Anderson G; Ye X; Henle K; Yang Z; Li G
    Int J Biomed Comput; 1994 May; 35(4):297-307. PubMed ID: 8063456
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Feasibility of A-mode ultrasound attenuation as a monitoring method of local hyperthermia treatment.
    Manaf NA; Aziz MN; Ridzuan DS; Mohamad Salim MI; Wahab AA; Lai KW; Hum YC
    Med Biol Eng Comput; 2016 Jun; 54(6):967-81. PubMed ID: 27039402
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The induction of hyperthermia by ultrasound; its value and associated problems: II. Scanned-plane transducer.
    ter Haar G; Hopewell JW
    Phys Med Biol; 1985 Dec; 30(12):1327-33. PubMed ID: 4089020
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In vivo noninvasive temperature measurement by B-mode ultrasound imaging.
    Pouch AM; Cary TW; Schultz SM; Sehgal CM
    J Ultrasound Med; 2010 Nov; 29(11):1595-606. PubMed ID: 20966471
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Temperature elevation in focused Gaussian ultrasonic beams at various insonation times.
    Filipczyński L; Kujawska T; Wojcik J
    Ultrasound Med Biol; 1993; 19(8):667-79. PubMed ID: 8134971
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A remote temperature sensor for an ultrasound hyperthermia system using the acoustic signal derived from the heating signals.
    Mazumder D; Vasu RM; Roy D; Kanhirodan R
    Int J Hyperthermia; 2018 Feb; 34(1):122-131. PubMed ID: 28540819
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nd:YAG laser-induced interstitial hyperthermia using a long frosted contact probe.
    Panjehpour M; Overholt BF; Milligan AJ; Swaggerty MW; Wilkinson JE; Klebanow ER
    Lasers Surg Med; 1990; 10(1):16-24. PubMed ID: 2308460
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.