These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 32903524)

  • 1. Soil Microbiomes With the Genetic Capacity for Atmospheric Chemosynthesis Are Widespread Across the Poles and Are Associated With Moisture, Carbon, and Nitrogen Limitation.
    Ray AE; Zhang E; Terauds A; Ji M; Kong W; Ferrari BC
    Front Microbiol; 2020; 11():1936. PubMed ID: 32903524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atmospheric chemosynthesis is phylogenetically and geographically widespread and contributes significantly to carbon fixation throughout cold deserts.
    Ray AE; Zaugg J; Benaud N; Chelliah DS; Bay S; Wong HL; Leung PM; Ji M; Terauds A; Montgomery K; Greening C; Cowan DA; Kong W; Williams TJ; Hugenholtz P; Ferrari BC
    ISME J; 2022 Nov; 16(11):2547-2560. PubMed ID: 35933499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clearing the air: unraveling past and guiding future research in atmospheric chemosynthesis.
    Ray AE; Tribbia DZ; Cowan DA; Ferrari BC
    Microbiol Mol Biol Rev; 2023 Dec; 87(4):e0004823. PubMed ID: 37914532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogen-Oxidizing Bacteria Are Abundant in Desert Soils and Strongly Stimulated by Hydration.
    Jordaan K; Lappan R; Dong X; Aitkenhead IJ; Bay SK; Chiri E; Wieler N; Meredith LK; Cowan DA; Chown SL; Greening C
    mSystems; 2020 Nov; 5(6):. PubMed ID: 33203691
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atmospheric trace gases support primary production in Antarctic desert surface soil.
    Ji M; Greening C; Vanwonterghem I; Carere CR; Bay SK; Steen JA; Montgomery K; Lines T; Beardall J; van Dorst J; Snape I; Stott MB; Hugenholtz P; Ferrari BC
    Nature; 2017 Dec; 552(7685):400-403. PubMed ID: 29211716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Persistence and resistance: survival mechanisms of Candidatus Dormibacterota from nutrient-poor Antarctic soils.
    Montgomery K; Williams TJ; Brettle M; Berengut JF; Ray AE; Zhang E; Zaugg J; Hugenholtz P; Ferrari BC
    Environ Microbiol; 2021 Aug; 23(8):4276-4294. PubMed ID: 34029441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial communities in dark oligotrophic volcanic ice cave ecosystems of Mt. Erebus, Antarctica.
    Tebo BM; Davis RE; Anitori RP; Connell LB; Schiffman P; Staudigel H
    Front Microbiol; 2015; 6():179. PubMed ID: 25814983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome data mining and soil survey for the novel group 5 [NiFe]-hydrogenase to explore the diversity and ecological importance of presumptive high-affinity H(2)-oxidizing bacteria.
    Constant P; Chowdhury SP; Hesse L; Pratscher J; Conrad R
    Appl Environ Microbiol; 2011 Sep; 77(17):6027-35. PubMed ID: 21742924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Harnessing long-read amplicon sequencing to uncover NRPS and Type I PKS gene sequence diversity in polar desert soils.
    Benaud N; Zhang E; van Dorst J; Brown MV; Kalaitzis JA; Neilan BA; Ferrari BC
    FEMS Microbiol Ecol; 2019 Apr; 95(4):. PubMed ID: 30848780
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acidobacteria are active and abundant members of diverse atmospheric H
    Giguere AT; Eichorst SA; Meier DV; Herbold CW; Richter A; Greening C; Woebken D
    ISME J; 2021 Feb; 15(2):363-376. PubMed ID: 33024291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple energy sources and metabolic strategies sustain microbial diversity in Antarctic desert soils.
    Ortiz M; Leung PM; Shelley G; Jirapanjawat T; Nauer PA; Van Goethem MW; Bay SK; Islam ZF; Jordaan K; Vikram S; Chown SL; Hogg ID; Makhalanyane TP; Grinter R; Cowan DA; Greening C
    Proc Natl Acad Sci U S A; 2021 Nov; 118(45):. PubMed ID: 34732568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Candidatus Eremiobacterota, a metabolically and phylogenetically diverse terrestrial phylum with acid-tolerant adaptations.
    Ji M; Williams TJ; Montgomery K; Wong HL; Zaugg J; Berengut JF; Bissett A; Chuvochina M; Hugenholtz P; Ferrari BC
    ISME J; 2021 Sep; 15(9):2692-2707. PubMed ID: 33753881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Characteristic of Abundances and Diversity of Carbon Dioxide Fixation Microbes in Paddy Soils].
    Liu Q; Wei XM; Wu XH; Yuan HZ; Wang JR; Li YY; Ge TD; Wu JS
    Huan Jing Ke Xue; 2017 Feb; 38(2):760-768. PubMed ID: 29964536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Abundance and Diversity of CO2-Assimilating Bacteria and Algae Within Red Agricultural Soils Are Modulated by Changing Management Practice.
    Yuan H; Ge T; Chen X; Liu S; Zhu Z; Wu X; Wei W; Whiteley AS; Wu J
    Microb Ecol; 2015 Nov; 70(4):971-80. PubMed ID: 25956939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative analyses of ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) large-subunit genes (cbbL) in typical paddy soils.
    Xiao KQ; Bao P; Bao QL; Jia Y; Huang FY; Su JQ; Zhu YG
    FEMS Microbiol Ecol; 2014 Jan; 87(1):89-101. PubMed ID: 24024547
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial oxidation of atmospheric trace gases.
    Greening C; Grinter R
    Nat Rev Microbiol; 2022 Sep; 20(9):513-528. PubMed ID: 35414013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of increasing soil moisture on Antarctic desert microbial ecosystems.
    Zhang E; Wong SY; Czechowski P; Terauds A; Ray AE; Benaud N; Chelliah DS; Wilkins D; Montgomery K; Ferrari BC
    Conserv Biol; 2024 Apr; ():e14268. PubMed ID: 38622950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diversity and distribution of autotrophic microbial community along environmental gradients in grassland soils on the Tibetan Plateau.
    Guo G; Kong W; Liu J; Zhao J; Du H; Zhang X; Xia P
    Appl Microbiol Biotechnol; 2015 Oct; 99(20):8765-76. PubMed ID: 26084890
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effects of Soil Texture on Autotrophic CO
    Wang QY; Wu XH; Zhu ZK; Yuan HZ; Sui FG; Ge TD; Wu JS
    Huan Jing Ke Xue; 2016 Oct; 37(10):3987-3995. PubMed ID: 29964436
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrative control of carbon, nitrogen, hydrogen, and sulfur metabolism: the central role of the Calvin-Benson-Bassham cycle.
    Laguna R; Joshi GS; Dangel AW; Luther AK; Tabita FR
    Adv Exp Med Biol; 2010; 675():265-71. PubMed ID: 20532746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.