BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 32903619)

  • 1. RNase T2 in Inflammation and Cancer: Immunological and Biological Views.
    Wu L; Xu Y; Zhao H; Li Y
    Front Immunol; 2020; 11():1554. PubMed ID: 32903619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ribonucleases from T2 family.
    Deshpande RA; Shankar V
    Crit Rev Microbiol; 2002; 28(2):79-122. PubMed ID: 12109772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phylogenetic analyses and characterization of RNase X25 from Drosophila melanogaster suggest a conserved housekeeping role and additional functions for RNase T2 enzymes in protostomes.
    Ambrosio L; Morriss S; Riaz A; Bailey R; Ding J; MacIntosh GC
    PLoS One; 2014; 9(8):e105444. PubMed ID: 25133712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immune Sensing of Synthetic, Bacterial, and Protozoan RNA by Toll-like Receptor 8 Requires Coordinated Processing by RNase T2 and RNase 2.
    Ostendorf T; Zillinger T; Andryka K; Schlee-Guimaraes TM; Schmitz S; Marx S; Bayrak K; Linke R; Salgert S; Wegner J; Grasser T; Bauersachs S; Soltesz L; Hübner MP; Nastaly M; Coch C; Kettwig M; Roehl I; Henneke M; Hoerauf A; Barchet W; Gärtner J; Schlee M; Hartmann G; Bartok E
    Immunity; 2020 Apr; 52(4):591-605.e6. PubMed ID: 32294405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TLR8 Is a Sensor of RNase T2 Degradation Products.
    Greulich W; Wagner M; Gaidt MM; Stafford C; Cheng Y; Linder A; Carell T; Hornung V
    Cell; 2019 Nov; 179(6):1264-1275.e13. PubMed ID: 31778653
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amino acid sequence analysis and characterization of a ribonuclease from starfish Asterias amurensis.
    Motoyoshi N; Kobayashi H; Itagaki T; Inokuchi N
    J Biochem; 2016 Sep; 160(3):131-9. PubMed ID: 26920046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular cloning and characterization of the human RNase kappa, an ortholog of Cc RNase.
    Economopoulou MA; Fragoulis EG; Sideris DC
    Nucleic Acids Res; 2007; 35(19):6389-98. PubMed ID: 17881363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of immunity and inflammation by hypoxia in immunological niches.
    Taylor CT; Colgan SP
    Nat Rev Immunol; 2017 Dec; 17(12):774-785. PubMed ID: 28972206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Residues 36-42 of liver RNase PL3 contribute to its uridine-preferring substrate specificity. Cloning of the cDNA and site-directed mutagenesis studies.
    Vicentini AM; Hemmings BA; Hofsteenge J
    Protein Sci; 1994 Mar; 3(3):459-66. PubMed ID: 8019417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Myeloid derived-suppressor cells: their role in cancer and obesity.
    Ostrand-Rosenberg S
    Curr Opin Immunol; 2018 Apr; 51():68-75. PubMed ID: 29544121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A protease sensitive region of plant and animal ribonucleases belonging to the RNase T2 family.
    Iwama M; Kusano A; Ogawa Y; Ohgi K; Irie M
    Biol Pharm Bull; 1998 Jun; 21(6):634-7. PubMed ID: 9657053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On a salmon (Oncorhynchus [corrected] keta) liver RNase, belonging to RNase T2 family: primary structure and some properties.
    Suzuki R; Kanno S; Ogawa Y; Iwama M; Tsuji T; Ohgi K; Irie M
    Biosci Biotechnol Biochem; 2005 Feb; 69(2):343-52. PubMed ID: 15725660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and activity of the only human RNase T2.
    Thorn A; Steinfeld R; Ziegenbein M; Grapp M; Hsiao HH; Urlaub H; Sheldrick GM; Gärtner J; Krätzner R
    Nucleic Acids Res; 2012 Sep; 40(17):8733-42. PubMed ID: 22735700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Broad-specificity endoribonucleases and mRNA degradation in Escherichia coli.
    Srivastava SK; Cannistraro VJ; Kennell D
    J Bacteriol; 1992 Jan; 174(1):56-62. PubMed ID: 1309522
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thirty-three years later, a glimpse at the ribonuclease III active site.
    Zamore PD
    Mol Cell; 2001 Dec; 8(6):1158-60. PubMed ID: 11885596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tyr-48, a conserved residue in ribotoxins, is involved in the RNA-degrading activity of alpha-sarcin.
    Alvarez-García E; García-Ortega L; Verdún Y; Bruix M; Martínez del Pozo A; Gavilanes JG
    Biol Chem; 2006 May; 387(5):535-41. PubMed ID: 16740124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteoglycans and Immunobiology of Cancer-Therapeutic Implications.
    Tzanakakis G; Neagu M; Tsatsakis A; Nikitovic D
    Front Immunol; 2019; 10():875. PubMed ID: 31068944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The 3' substrate determinants for the catalytic efficiency of the Bacillus subtilis RNase P holoenzyme suggest autolytic processing of the RNase P RNA in vivo.
    Loria A; Pan T
    RNA; 2000 Oct; 6(10):1413-22. PubMed ID: 11073217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNA degradosomes in bacteria and chloroplasts: classification, distribution and evolution of RNase E homologs.
    Aït-Bara S; Carpousis AJ
    Mol Microbiol; 2015 Sep; 97(6):1021-135. PubMed ID: 26096689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ILC regulation of T cell responses in inflammatory diseases and cancer.
    Warner K; Ohashi PS
    Semin Immunol; 2019 Feb; 41():101284. PubMed ID: 31383506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.