These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 32903827)
1. Cofilin-1 Is a Mechanosensitive Regulator of Transcription. Domingues C; Geraldo AM; Anjo SI; Matos A; Almeida C; Caramelo I; Lopes-da-Silva JA; Paiva A; Carvalho J; Pires das Neves R; Manadas B; Grãos M Front Cell Dev Biol; 2020; 8():678. PubMed ID: 32903827 [TBL] [Abstract][Full Text] [Related]
2. Volume Adaptation Controls Stem Cell Mechanotransduction. Major LG; Holle AW; Young JL; Hepburn MS; Jeong K; Chin IL; Sanderson RW; Jeong JH; Aman ZM; Kennedy BF; Hwang Y; Han DW; Park HW; Guan KL; Spatz JP; Choi YS ACS Appl Mater Interfaces; 2019 Dec; 11(49):45520-45530. PubMed ID: 31714734 [TBL] [Abstract][Full Text] [Related]
3. Soft culture substrates favor stem-like cellular phenotype and facilitate reprogramming of human mesenchymal stem/stromal cells (hMSCs) through mechanotransduction. Gerardo H; Lima A; Carvalho J; Ramos JRD; Couceiro S; Travasso RDM; Pires das Neves R; Grãos M Sci Rep; 2019 Jun; 9(1):9086. PubMed ID: 31235788 [TBL] [Abstract][Full Text] [Related]
4. Substrate elasticity regulates adipose-derived stromal cell differentiation towards osteogenesis and adipogenesis through β-catenin transduction. Xie J; Zhang D; Zhou C; Yuan Q; Ye L; Zhou X Acta Biomater; 2018 Oct; 79():83-95. PubMed ID: 30134207 [TBL] [Abstract][Full Text] [Related]
5. Soft matrices inhibit cell proliferation and inactivate the fibrotic phenotype of deep endometriotic stromal cells in vitro. Matsuzaki S; Canis M; Pouly JL; Darcha C Hum Reprod; 2016 Mar; 31(3):541-53. PubMed ID: 26762314 [TBL] [Abstract][Full Text] [Related]
6. Synergistic effects of particulate matter and substrate stiffness on epithelial-to-mesenchymal transition. Barker TH; Dysart MM; Brown AC; Douglas AM; Fiore VF; Russell AG; Res Rep Health Eff Inst; 2014 Nov; (182):3-41. PubMed ID: 25669020 [TBL] [Abstract][Full Text] [Related]
7. Energy expenditure during cell spreading influences the cellular response to matrix stiffness. Xie J; Bao M; Hu X; Koopman WJH; Huck WTS Biomaterials; 2021 Jan; 267():120494. PubMed ID: 33130323 [TBL] [Abstract][Full Text] [Related]
8. ROCK isoforms differentially modulate cancer cell motility by mechanosensing the substrate stiffness. Peng Y; Chen Z; Chen Y; Li S; Jiang Y; Yang H; Wu C; You F; Zheng C; Zhu J; Tan Y; Qin X; Liu Y Acta Biomater; 2019 Apr; 88():86-101. PubMed ID: 30771534 [TBL] [Abstract][Full Text] [Related]
9. Substrate elasticity regulates the behavior of human monocyte-derived macrophages. Adlerz KM; Aranda-Espinoza H; Hayenga HN Eur Biophys J; 2016 May; 45(4):301-9. PubMed ID: 26613613 [TBL] [Abstract][Full Text] [Related]
10. Substrate topography interacts with substrate stiffness and culture time to regulate mechanical properties and smooth muscle differentiation of mesenchymal stem cells. Parandakh A; Anbarlou A; Tafazzoli-Shadpour M; Ardeshirylajimi A; Khani MM Colloids Surf B Biointerfaces; 2019 Jan; 173():194-201. PubMed ID: 30292932 [TBL] [Abstract][Full Text] [Related]
11. Substrate stiffness- and topography-dependent differentiation of annulus fibrosus-derived stem cells is regulated by Yes-associated protein. Chu G; Yuan Z; Zhu C; Zhou P; Wang H; Zhang W; Cai Y; Zhu X; Yang H; Li B Acta Biomater; 2019 Jul; 92():254-264. PubMed ID: 31078765 [TBL] [Abstract][Full Text] [Related]
12. [Bone marrow mesenchymal stem cells interactions with hepatocytes and hepatic stellate cells on different stiff substrates]. Cao XM; Huang QP; Chen SS Zhonghua Gan Zang Bing Za Zhi; 2019 Jun; 27(6):424-429. PubMed ID: 31357757 [No Abstract] [Full Text] [Related]
13. Exploring the roles of integrin binding and cytoskeletal reorganization during mesenchymal stem cell mechanotransduction in soft and stiff hydrogels subjected to dynamic compression. Steward AJ; Wagner DR; Kelly DJ J Mech Behav Biomed Mater; 2014 Oct; 38():174-82. PubMed ID: 24054946 [TBL] [Abstract][Full Text] [Related]
14. Control of three-dimensional substrate stiffness to manipulate mesenchymal stem cell fate toward neuronal or glial lineages. Her GJ; Wu HC; Chen MH; Chen MY; Chang SC; Wang TW Acta Biomater; 2013 Feb; 9(2):5170-80. PubMed ID: 23079022 [TBL] [Abstract][Full Text] [Related]
15. α2β1 integrin-mediated mechanical signals during osteodifferentiation of stem cells from the Wharton's jelly of the umbilical cord. Witkowska-Zimny M; Wrobel E; Mrowka P Folia Histochem Cytobiol; 2014; 52(4):297-307. PubMed ID: 25401764 [TBL] [Abstract][Full Text] [Related]
16. Substrate stiffness modulates the emergence and magnitude of senescence phenotypes in dermal fibroblasts. Starich B; Yang F; Tanrioven D; Kung HC; Baek J; Nair PR; Kamat P; Macaluso N; Eoh J; Han KS; Gu L; Walston J; Sun S; Wu PH; Wirtz D; Phillip JM bioRxiv; 2024 Jul; ():. PubMed ID: 38370721 [TBL] [Abstract][Full Text] [Related]
17. Past matrix stiffness primes epithelial cells and regulates their future collective migration through a mechanical memory. Nasrollahi S; Walter C; Loza AJ; Schimizzi GV; Longmore GD; Pathak A Biomaterials; 2017 Nov; 146():146-155. PubMed ID: 28918264 [TBL] [Abstract][Full Text] [Related]
18. Effects of substrate stiffness and actomyosin contractility on coupling between force transmission and vinculin-paxillin recruitment at single focal adhesions. Zhou DW; Lee TT; Weng S; Fu J; García AJ Mol Biol Cell; 2017 Jul; 28(14):1901-1911. PubMed ID: 28468976 [TBL] [Abstract][Full Text] [Related]
19. Cyclic stretch promotes osteogenesis-related gene expression in osteoblast-like cells through a cofilin-associated mechanism. Gao J; Fu S; Zeng Z; Li F; Niu Q; Jing D; Feng X Mol Med Rep; 2016 Jul; 14(1):218-24. PubMed ID: 27177232 [TBL] [Abstract][Full Text] [Related]
20. Bone marrow CD34 Zhang S; Ma X; Guo J; Yao K; Wang C; Dong Z; Zhu H; Fan F; Huang Z; Yang X; Qian J; Zou Y; Sun A; Ge J Stem Cell Res Ther; 2017 Dec; 8(1):280. PubMed ID: 29237495 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]