These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 32904558)

  • 1. Sars-CoV-2 (COVID-19) inactivation capability of copper-coated touch surface fabricated by cold-spray technology.
    Hutasoit N; Kennedy B; Hamilton S; Luttick A; Rahman Rashid RA; Palanisamy S
    Manuf Lett; 2020 Aug; 25():93-97. PubMed ID: 32904558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the emergence of antibacterial and antiviral copper cold spray coatings.
    Sousa BC; Massar CJ; Gleason MA; Cote DL
    J Biol Eng; 2021 Feb; 15(1):8. PubMed ID: 33627170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antimicrobial Copper Cold Spray Coatings and SARS-CoV-2 Surface Inactivation.
    Sousa BC; Cote DL
    MRS Adv; 2020; 5(56):2873-2880. PubMed ID: 33437532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antibacterial Efficacy of Cold-Sprayed Copper Coatings against Gram-Positive
    Hutasoit N; Topa SH; Javed MA; Rahman Rashid RA; Palombo E; Palanisamy S
    Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of ion dissolution in metal and metal oxide surface inactivation of SARS-CoV-2.
    Hilton J; Nanao Y; Flokstra M; Askari M; Smith TK; Di Falco A; King PDC; Wahl P; Adamson CS
    Appl Environ Microbiol; 2024 Feb; 90(2):e0155323. PubMed ID: 38259079
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antiviral and Antibacterial Cold Spray Coating Application on Rubber Substrate, Disruption in Disease Transmission Chain.
    Saha DC; Boegel SJ; Tanvir S; Nogueira CL; Aucoin MG; Anderson WA; Jahed H
    J Therm Spray Technol; 2023; 32(4):818-830. PubMed ID: 37521526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and assessment of copper-based nanoparticles as a surface coating agent for antiviral properties against SARS-CoV-2.
    Purniawan A; Lusida MI; Pujiyanto RW; Nastri AM; Permanasari AA; Harsono AAH; Oktavia NH; Wicaksono ST; Dewantari JR; Prasetya RR; Rahardjo K; Nishimura M; Mori Y; Shimizu K
    Sci Rep; 2022 Mar; 12(1):4835. PubMed ID: 35318357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sprayable copper and copper-zinc nanowires inks for antiviral surface coating.
    Pan C; Phadke KS; Li Z; Ouyang G; Kim TH; Zhou L; Slaughter J; Bellaire B; Ren S; Cui J
    RSC Adv; 2022 Feb; 12(10):6093-6098. PubMed ID: 35424578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cupric Oxide Coating That Rapidly Reduces Infection by SARS-CoV-2 via Solids.
    Hosseini M; Chin AWH; Behzadinasab S; Poon LLM; Ducker WA
    ACS Appl Mater Interfaces; 2021 Feb; 13(5):5919-5928. PubMed ID: 33480246
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Copper nanoparticles-based polymeric spray coating: Nanoshield against Sars-Cov-2.
    Foffa I; Losi P; Quaranta P; Cara A; Al Kayal T; D'Acunto M; Presciuttini G; Pistello M; Soldani G
    J Appl Biomater Funct Mater; 2022; 20():22808000221076326. PubMed ID: 35611488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Luminore CopperTouch™ surface coating effectively inactivates SARS-CoV-2, Ebola and Marburg viruses in vitro.
    Mantlo EK; Paessler S; Seregin A; Mitchell A
    medRxiv; 2020 Jul; ():. PubMed ID: 32699857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anti-viral organic coatings for high touch surfaces based on smart-release, Cu
    Saud Z; Richards CAJ; Williams G; Stanton RJ
    Prog Org Coat; 2022 Nov; 172():107135. PubMed ID: 36035655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficacy of copper blend coatings in reducing SARS-CoV-2 contamination.
    Glass A; Klinkhammer KE; Christofferson RC; Mores CN
    Biometals; 2023 Feb; 36(1):217-225. PubMed ID: 36474101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel chlorine-extending polymer coating with prolonged antiviral activity against SARS-CoV-2.
    Zhang Y; Choi YW; Demir B; Ekbataniamiri F; Fulton ML; Ma M; Schang LM; Purevdorj-Gage L; Qiao M
    Lett Appl Microbiol; 2022 Nov; 75(5):1346-1353. PubMed ID: 35965454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal Spray Copper Alloy Coatings as Potent Biocidal and Virucidal Surfaces.
    Mostaghimi J; Pershin L; Salimijazi H; Nejad M; Ringuette M
    J Therm Spray Technol; 2021; 30(1-2):25-39. PubMed ID: 38624650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Copper-Alloy Surfaces and Cleaning Regimens against the Spread of SARS-CoV-2 in Dentistry and Orthopedics. From Fomites to Anti-Infective Nanocoatings.
    Poggio C; Colombo M; Arciola CR; Greggi T; Scribante A; Dagna A
    Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32707757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Copper-Coated Polypropylene Filter Face Mask with SARS-CoV-2 Antiviral Ability.
    Jung S; Yang JY; Byeon EY; Kim DG; Lee DG; Ryoo S; Lee S; Shin CW; Jang HW; Kim HJ; Lee S
    Polymers (Basel); 2021 Apr; 13(9):. PubMed ID: 33922136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A demonstration of the antimicrobial effectiveness of various copper surfaces.
    Champagne VK; Helfritch DJ
    J Biol Eng; 2013 Mar; 7(1):8. PubMed ID: 23537176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of the Fatigue Behaviour and Failure Mechanisms of 52100 Steel Coated with WIP-C1 (Ni/CrC) by Cold Spray.
    Goanta V; Munteanu C; Müftü S; Istrate B; Schwartz P; Boese S; Ferguson G; Morăraș CI
    Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Medical equipment antiseptic processes using the atmospheric plasma sprayed copper coatings.
    Goudarzi M; Saviz S; Ghoranneviss M; Salar Elahi A
    J Xray Sci Technol; 2017; 25(3):479-485. PubMed ID: 27911352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.