These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 32904970)
1. Autonomous image segmentation and identification of anatomical landmarks from lumbar spine intraoperative computed tomography scans using machine learning: A validation study. Siemionow K; Luciano C; Forsthoefel C; Aydogmus S J Craniovertebr Junction Spine; 2020; 11(2):99-103. PubMed ID: 32904970 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of a multiview architecture for automatic vertebral labeling of palliative radiotherapy simulation CT images. Netherton TJ; Rhee DJ; Cardenas CE; Chung C; Klopp AH; Peterson CB; Howell RM; Balter PA; Court LE Med Phys; 2020 Nov; 47(11):5592-5608. PubMed ID: 33459402 [TBL] [Abstract][Full Text] [Related]
3. SLIDE: automatic spine level identification system using a deep convolutional neural network. Hetherington J; Lessoway V; Gunka V; Abolmaesumi P; Rohling R Int J Comput Assist Radiol Surg; 2017 Jul; 12(7):1189-1198. PubMed ID: 28361323 [TBL] [Abstract][Full Text] [Related]
4. The insertion technique of translaminar screws in the thoracic spine: computed tomography and cadaveric validation. Cho W; Le JT; Shimer AL; Werner BC; Glaser JA; Shen FH Spine J; 2015 Feb; 15(2):309-13. PubMed ID: 25264180 [TBL] [Abstract][Full Text] [Related]
5. Investigation of the "Superior Facet Rule" Using 3D-Printed Thoracic Vertebrae With Simulated Corticocancellous Interface. Clifton W; Damon A; Valero-Moreno F; Marenco-Hillembrand L; Nottmeier E; Tubbs RS; Fox WC; Pichelmann M World Neurosurg; 2020 Nov; 143():e51-e59. PubMed ID: 32585384 [TBL] [Abstract][Full Text] [Related]
6. Automated vertebrae localization and identification by decision forests and image-based refinement on real-world CT data. Jimenez-Pastor A; Alberich-Bayarri A; Fos-Guarinos B; Garcia-Castro F; Garcia-Juan D; Glocker B; Marti-Bonmati L Radiol Med; 2020 Jan; 125(1):48-56. PubMed ID: 31522345 [TBL] [Abstract][Full Text] [Related]
7. BRR-Net: A tandem architectural CNN-RNN for automatic body region localization in CT images. Agrawal V; Udupa J; Tong Y; Torigian D Med Phys; 2020 Oct; 47(10):5020-5031. PubMed ID: 32761899 [TBL] [Abstract][Full Text] [Related]
8. Ideal starting point and trajectory for C2 pedicle screw placement: a 3D computed tomography analysis using perioperative measurements. Chin KR; Mills MV; Seale J; Cumming V Spine J; 2014 Apr; 14(4):615-8. PubMed ID: 24200408 [TBL] [Abstract][Full Text] [Related]
10. Deep learning for segmentation of 49 selected bones in CT scans: First step in automated PET/CT-based 3D quantification of skeletal metastases. Lindgren Belal S; Sadik M; Kaboteh R; Enqvist O; Ulén J; Poulsen MH; Simonsen J; Høilund-Carlsen PF; Edenbrandt L; Trägårdh E Eur J Radiol; 2019 Apr; 113():89-95. PubMed ID: 30927965 [TBL] [Abstract][Full Text] [Related]
11. Analysis of the paraspinal muscle morphology of the lumbar spine using a convolutional neural network (CNN). Baur D; Bieck R; Berger J; Neumann J; Henkelmann J; Neumuth T; Heyde CE; Voelker A Eur Spine J; 2022 Mar; 31(3):774-782. PubMed ID: 34894288 [TBL] [Abstract][Full Text] [Related]
12. CT image segmentation of bone for medical additive manufacturing using a convolutional neural network. Minnema J; van Eijnatten M; Kouw W; Diblen F; Mendrik A; Wolff J Comput Biol Med; 2018 Dec; 103():130-139. PubMed ID: 30366309 [TBL] [Abstract][Full Text] [Related]
13. Multi-Scale deep learning framework for cochlea localization, segmentation and analysis on clinical ultra-high-resolution CT images. Heutink F; Koch V; Verbist B; van der Woude WJ; Mylanus E; Huinck W; Sechopoulos I; Caballo M Comput Methods Programs Biomed; 2020 Jul; 191():105387. PubMed ID: 32109685 [TBL] [Abstract][Full Text] [Related]
14. Placement of pedicle screws in the human cadaveric cervical spine: comparative accuracy of three techniques. Ludwig SC; Kramer DL; Balderston RA; Vaccaro AR; Foley KF; Albert TJ Spine (Phila Pa 1976); 2000 Jul; 25(13):1655-67. PubMed ID: 10870141 [TBL] [Abstract][Full Text] [Related]
15. Segmentation of lung parenchyma in CT images using CNN trained with the clustering algorithm generated dataset. Xu M; Qi S; Yue Y; Teng Y; Xu L; Yao Y; Qian W Biomed Eng Online; 2019 Jan; 18(1):2. PubMed ID: 30602393 [TBL] [Abstract][Full Text] [Related]
16. Rotation effect and anatomic landmark accuracy for midline placement of lumbar artificial disc under fluoroscopy. Mikhael M; Brooks JT; Akpolat YT; Cheng WK Eur Spine J; 2017 Mar; 26(3):794-798. PubMed ID: 25971356 [TBL] [Abstract][Full Text] [Related]
17. Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks. Tong N; Gou S; Yang S; Ruan D; Sheng K Med Phys; 2018 Oct; 45(10):4558-4567. PubMed ID: 30136285 [TBL] [Abstract][Full Text] [Related]
18. Comparative morphometry of L4 vertebrae: comparison of large animal models for the human lumbar spine. McLain RF; Yerby SA; Moseley TA Spine (Phila Pa 1976); 2002 Apr; 27(8):E200-6. PubMed ID: 11935119 [TBL] [Abstract][Full Text] [Related]
19. Accuracy and Reliability of Computer-aided Anatomical Measurements for Vertebral Body and Disc Based on Computed Tomography Scans. Yao J; Dong B; Sun J; Liu JT; Liu F; Li XW; Yuan PW; Zhang JB Orthop Surg; 2020 Aug; 12(4):1182-1189. PubMed ID: 32618427 [TBL] [Abstract][Full Text] [Related]
20. Patient-specific and global convolutional neural networks for robust automatic liver tumor delineation in follow-up CT studies. Vivanti R; Joskowicz L; Lev-Cohain N; Ephrat A; Sosna J Med Biol Eng Comput; 2018 Sep; 56(9):1699-1713. PubMed ID: 29524116 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]