These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 32905355)

  • 1. Biomass-degrading glycoside hydrolases of archaeal origin.
    Suleiman M; Krüger A; Antranikian G
    Biotechnol Biofuels; 2020; 13():153. PubMed ID: 32905355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glycoside Hydrolases and Glycosyltransferases from Hyperthermophilic Archaea: Insights on Their Characteristics and Applications in Biotechnology.
    Amin K; Tranchimand S; Benvegnu T; Abdel-Razzak Z; Chamieh H
    Biomolecules; 2021 Oct; 11(11):. PubMed ID: 34827555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extremely thermoactive archaeal endoglucanase from a shallow marine hydrothermal vent from Vulcano Island.
    Suleiman M; Schröder C; Klippel B; Schäfers C; Krüger A; Antranikian G
    Appl Microbiol Biotechnol; 2019 Feb; 103(3):1267-1274. PubMed ID: 30547216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Marine extremophiles: a source of hydrolases for biotechnological applications.
    Dalmaso GZ; Ferreira D; Vermelho AB
    Mar Drugs; 2015 Apr; 13(4):1925-65. PubMed ID: 25854643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular cloning, expression, and characterization of four novel thermo-alkaliphilic enzymes retrieved from a metagenomic library.
    Maruthamuthu M; van Elsas JD
    Biotechnol Biofuels; 2017; 10():142. PubMed ID: 28588643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional Analysis of the Glucan Degradation Locus in Caldicellulosiruptor bescii Reveals Essential Roles of Component Glycoside Hydrolases in Plant Biomass Deconstruction.
    Conway JM; McKinley BS; Seals NL; Hernandez D; Khatibi PA; Poudel S; Giannone RJ; Hettich RL; Williams-Rhaesa AM; Lipscomb GL; Adams MWW; Kelly RM
    Appl Environ Microbiol; 2017 Dec; 83(24):. PubMed ID: 28986379
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Valorization of Biomasses from Energy Crops for the Discovery of Novel Thermophilic Glycoside Hydrolases through Metagenomic Analysis.
    Iacono R; Strazzulli A; Giglio R; Bitetti F; Cobucci-Ponzano B; Moracci M
    Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glycoside hydrolases from (hyper)thermophilic archaea: structure, function, and applications.
    Iacono R; De Lise F; Moracci M; Cobucci-Ponzano B; Strazzulli A
    Essays Biochem; 2023 Aug; 67(4):731-751. PubMed ID: 37341134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioprospecting metagenomics of decaying wood: mining for new glycoside hydrolases.
    Li LL; Taghavi S; McCorkle SM; Zhang YB; Blewitt MG; Brunecky R; Adney WS; Himmel ME; Brumm P; Drinkwater C; Mead DA; Tringe SG; Lelie Dv
    Biotechnol Biofuels; 2011 Aug; 4(1):23. PubMed ID: 21816041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genus Thermotoga: A valuable home of multifunctional glycoside hydrolases (GHs) for industrial sustainability.
    Akram F; Haq IU; Shah FI; Aqeel A; Ahmed Z; Mir AS; Qureshi SS; Raja SI
    Bioorg Chem; 2022 Oct; 127():105942. PubMed ID: 35709577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discovery of novel carbohydrate degrading enzymes from soda lakes through functional metagenomics.
    Jeilu O; Simachew A; Alexandersson E; Johansson E; Gessesse A
    Front Microbiol; 2022; 13():1059061. PubMed ID: 36569080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioprospecting metagenomics of a microbial community on cotton degradation: Mining for new glycoside hydrolases.
    Zhang G; Liu P; Zhang L; Wei W; Wang X; Wei D; Wang W
    J Biotechnol; 2016 Sep; 234():35-42. PubMed ID: 27460447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of a heat-active archaeal β-glucosidase from a hydrothermal spring metagenome.
    Schröder C; Elleuche S; Blank S; Antranikian G
    Enzyme Microb Technol; 2014 Apr; 57():48-54. PubMed ID: 24629267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploration of extremophiles for high temperature biotechnological processes.
    Elleuche S; Schäfers C; Blank S; Schröder C; Antranikian G
    Curr Opin Microbiol; 2015 Jun; 25():113-9. PubMed ID: 26066287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lignocellulolytic systems of soil bacteria: A vast and diverse toolbox for biotechnological conversion processes.
    López-Mondéjar R; Algora C; Baldrian P
    Biotechnol Adv; 2019 Nov; 37(6):107374. PubMed ID: 30910513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioprospecting metagenomics for new glycoside hydrolases.
    Gilbert J; Li LL; Taghavi S; McCorkle SM; Tringe S; van der Lelie D
    Methods Mol Biol; 2012; 908():141-51. PubMed ID: 22843397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glycosyl hydrolases from hyperthermophilic microorganisms.
    Bauer MW; Driskill LE; Kelly RM
    Curr Opin Biotechnol; 1998 Apr; 9(2):141-5. PubMed ID: 9588002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermophiles in the genomic era: Biodiversity, science, and applications.
    Urbieta MS; Donati ER; Chan KG; Shahar S; Sin LL; Goh KM
    Biotechnol Adv; 2015 Nov; 33(6 Pt 1):633-47. PubMed ID: 25911946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biotechnological applications of archaeal enzymes from extreme environments.
    Cabrera MÁ; Blamey JM
    Biol Res; 2018 Oct; 51(1):37. PubMed ID: 30290805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of hemicellulase and cellulase from the extremely thermophilic bacterium Caldicellulosiruptor owensensis and their potential application for bioconversion of lignocellulosic biomass without pretreatment.
    Peng X; Qiao W; Mi S; Jia X; Su H; Han Y
    Biotechnol Biofuels; 2015; 8():131. PubMed ID: 26322125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.