These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 32905380)
21. Wrapping Sb Wei Y; Chen J; Wang S; Zhong X; Xiong R; Gan L; Ma Y; Zhai T; Li H ACS Appl Mater Interfaces; 2020 Apr; 12(14):16264-16275. PubMed ID: 32069397 [TBL] [Abstract][Full Text] [Related]
22. Super-Expansion of Assembled Reduced Graphene Oxide Interlayers by Segregation of Al Nanoparticle Pillars for High-Capacity Na-Ion Battery Anodes. Pyo S; Eom W; Kim YJ; Lee SH; Han TH; Ryu WH ACS Appl Mater Interfaces; 2020 May; 12(21):23781-23788. PubMed ID: 32365288 [TBL] [Abstract][Full Text] [Related]
23. Expanded graphite embedded with aluminum nanoparticles as superior thermal conductivity anodes for high-performance lithium-ion batteries. Zhao T; She S; Ji X; Guo X; Jin W; Zhu R; Dang A; Li H; Li T; Wei B Sci Rep; 2016 Sep; 6():33833. PubMed ID: 27671848 [TBL] [Abstract][Full Text] [Related]
24. Titania-carbon nanocomposite anodes for lithium ion batteries--effects of confined growth and phase synergism. Petkovich ND; Wilson BE; Rudisill SG; Stein A ACS Appl Mater Interfaces; 2014 Oct; 6(20):18215-27. PubMed ID: 25249184 [TBL] [Abstract][Full Text] [Related]
26. Phosphorus-Rich Copper Phosphide Nanowires for Field-Effect Transistors and Lithium-Ion Batteries. Li GA; Wang CY; Chang WC; Tuan HY ACS Nano; 2016 Sep; 10(9):8632-44. PubMed ID: 27603024 [TBL] [Abstract][Full Text] [Related]
27. Tin and Tin Compounds for Sodium Ion Battery Anodes: Phase Transformations and Performance. Li Z; Ding J; Mitlin D Acc Chem Res; 2015 Jun; 48(6):1657-65. PubMed ID: 26046961 [TBL] [Abstract][Full Text] [Related]
28. MOF-Derived CuS@Cu-BTC Composites as High-Performance Anodes for Lithium-Ion Batteries. Wang P; Shen M; Zhou H; Meng C; Yuan A Small; 2019 Nov; 15(47):e1903522. PubMed ID: 31608560 [TBL] [Abstract][Full Text] [Related]
29. 2-Carboxyethylgermanium Sesquioxide as A Promising Anode Material for Li-Ion Batteries. Saverina EA; Kapaev RR; Stishenko PV; Galushko AS; Balycheva VA; Ananikov VP; Egorov MP; Jouikov VV; Troshin PA; Syroeshkin MA ChemSusChem; 2020 Jun; 13(12):3137-3146. PubMed ID: 32329561 [TBL] [Abstract][Full Text] [Related]
30. Continuous-Flow Synthesis of Carbon-Coated Silicon/Iron Silicide Secondary Particles for Li-Ion Batteries. Jo C; Groombridge AS; De La Verpilliere J; Lee JT; Son Y; Liang HL; Boies AM; De Volder M ACS Nano; 2020 Jan; 14(1):698-707. PubMed ID: 31834775 [TBL] [Abstract][Full Text] [Related]
31. Carbon-Free, High-Capacity and Long Cycle Life 1D-2D NiMoO Li Z; Zhan X; Zhu W; Qi S; Braun PV ACS Appl Mater Interfaces; 2019 Nov; 11(47):44593-44600. PubMed ID: 31682756 [TBL] [Abstract][Full Text] [Related]
32. Encapsulating Metallic Lithium into Carbon Nanocages Which Enables a Low-Volume Effect and a Dendrite-Free Lithium Metal Anode. Fan H; Dong Q; Gao C; Hong B; Zhang Z; Zhang K; Lai Y ACS Appl Mater Interfaces; 2019 Aug; 11(34):30902-30910. PubMed ID: 31380616 [TBL] [Abstract][Full Text] [Related]
33. Synergy of Black Phosphorus-Graphite-Polyaniline-Based Ternary Composites for Stable High Reversible Capacity Na-Ion Battery Anodes. Jin H; Zhang T; Chuang C; Lu YR; Chan TS; Du Z; Ji H; Wan LJ ACS Appl Mater Interfaces; 2019 May; 11(18):16656-16661. PubMed ID: 30985107 [TBL] [Abstract][Full Text] [Related]
34. Architecting hierarchical shell porosity of hollow prussian blue-derived iron oxide for enhanced Li storage. Zhao Z; Liu X; Luan C; Liu X; Wang D; Qin T; Sui L; Zhang W J Microsc; 2019 Nov; 276(2):53-62. PubMed ID: 31603242 [TBL] [Abstract][Full Text] [Related]
35. Using Mixed Salt Electrolytes to Stabilize Silicon Anodes for Lithium-Ion Batteries via in Situ Formation of Li-M-Si Ternaries (M = Mg, Zn, Al, Ca). Han B; Liao C; Dogan F; Trask SE; Lapidus SH; Vaughey JT; Key B ACS Appl Mater Interfaces; 2019 Aug; 11(33):29780-29790. PubMed ID: 31318201 [TBL] [Abstract][Full Text] [Related]
36. Tin-graphene tubes as anodes for lithium-ion batteries with high volumetric and gravimetric energy densities. Mo R; Tan X; Li F; Tao R; Xu J; Kong D; Wang Z; Xu B; Wang X; Wang C; Li J; Peng Y; Lu Y Nat Commun; 2020 Mar; 11(1):1374. PubMed ID: 32170134 [TBL] [Abstract][Full Text] [Related]
37. Predicted stable Li Fei G; Duan S; Zhang M; Ren Z; Cui Y; Chen X; Liu Y; Yi W; Liu X Phys Chem Chem Phys; 2020 Sep; 22(34):19172-19177. PubMed ID: 32812581 [TBL] [Abstract][Full Text] [Related]
38. Silicene Flowers: A Dual Stabilized Silicon Building Block for High-Performance Lithium Battery Anodes. Zhang X; Qiu X; Kong D; Zhou L; Li Z; Li X; Zhi L ACS Nano; 2017 Jul; 11(7):7476-7484. PubMed ID: 28692250 [TBL] [Abstract][Full Text] [Related]
39. Lithium-Ion Insertion Properties of Solution-Exfoliated Germanane. Serino AC; Ko JS; Yeung MT; Schwartz JJ; Kang CB; Tolbert SH; Kaner RB; Dunn BS; Weiss PS ACS Nano; 2017 Aug; 11(8):7995-8001. PubMed ID: 28763196 [TBL] [Abstract][Full Text] [Related]
40. Three-dimensional SnO2/carbon on Cu foam for high-performance lithium ion battery anodes. Chen W; Maloney S; Wang W Nanotechnology; 2016 Oct; 27(41):415401. PubMed ID: 27587237 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]