BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 32905410)

  • 1. Enhancement of Molten Nitrate Thermal Properties by Reduced Graphene Oxide and Graphene Quantum Dots.
    Hamdy E; Saad L; Abulfotuh F; Soliman M; Ebrahim S
    ACS Omega; 2020 Sep; 5(34):21345-21354. PubMed ID: 32905410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermostatic properties of nitrate molten salts and their solar and eutectic mixtures.
    D'Aguanno B; Karthik M; Grace AN; Floris A
    Sci Rep; 2018 Jul; 8(1):10485. PubMed ID: 29992980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel Wide-Working-Temperature NaNO
    Wang H; Li J; Zhong Y; Liu X; Wang M
    Molecules; 2024 May; 29(10):. PubMed ID: 38792189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Effect of In Situ Synthesis of MgO Nanoparticles on the Thermal Properties of Ternary Nitrate.
    Tong Z; Li L; Li Y; Wang Q; Cheng X
    Materials (Basel); 2021 Oct; 14(19):. PubMed ID: 34640134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Melting Temperature Depression and Phase Transitions of Nitrate-Based Molten Salts in Nanoconfinement.
    Yazlak MG; Khan QA; Steinhart M; Duran H
    ACS Omega; 2022 Jul; 7(28):24669-24678. PubMed ID: 35874251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of nanoparticles on heat capacity of nanofluids based on molten salts as PCM for thermal energy storage.
    Chieruzzi M; Cerritelli GF; Miliozzi A; Kenny JM
    Nanoscale Res Lett; 2013 Oct; 8(1):448. PubMed ID: 24168168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and Characterization of Molten Salt Nanofluids for Thermal Energy Storage Application in Concentrated Solar Power Plants-Mechanistic Understanding of Specific Heat Capacity Enhancement.
    Ma B; Shin D; Banerjee D
    Nanomaterials (Basel); 2020 Nov; 10(11):. PubMed ID: 33207602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Composites of Graphene Quantum Dots and Reduced Graphene Oxide as Catalysts for Nitroarene Reduction.
    Zhang J; Zhang F; Yang Y; Guo S; Zhang J
    ACS Omega; 2017 Oct; 2(10):7293-7298. PubMed ID: 31457303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-Dimensional MoS
    Yang C; Wang Y; Wu Z; Zhang Z; Hu N; Peng C
    Nanomaterials (Basel); 2022 Mar; 12(6):. PubMed ID: 35335714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increment of specific heat capacity of solar salt with SiO2 nanoparticles.
    Andreu-Cabedo P; Mondragon R; Hernandez L; Martinez-Cuenca R; Cabedo L; Julia JE
    Nanoscale Res Lett; 2014; 9(1):582. PubMed ID: 25346648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal Storage Properties of Molten Nitrate Salt-Based Nanofluids with Graphene Nanoplatelets.
    Xie Q; Zhu Q; Li Y
    Nanoscale Res Lett; 2016 Dec; 11(1):306. PubMed ID: 27325522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and characterization of a quaternary nitrate based molten salt heat transfer fluid for concentrated solar power plant.
    Kwasi-Effah CC; Egware HO; Obanor AI; Ighodaro OO
    Heliyon; 2023 May; 9(5):e16096. PubMed ID: 37215795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal Energy Storage and Heat Transfer of Nano-Enhanced Phase Change Material (NePCM) in a Shell and Tube Thermal Energy Storage (TES) Unit with a Partial Layer of Eccentric Copper Foam.
    Ghalambaz M; Mehryan SAM; Ayoubloo KA; Hajjar A; El Kadri M; Younis O; Pour MS; Hulme-Smith C
    Molecules; 2021 Mar; 26(5):. PubMed ID: 33803388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Balancing light absorptivity and carrier conductivity of graphene quantum dots for high-efficiency bulk heterojunction solar cells.
    Kim JK; Park MJ; Kim SJ; Wang DH; Cho SP; Bae S; Park JH; Hong BH
    ACS Nano; 2013 Aug; 7(8):7207-12. PubMed ID: 23889189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal energy storage - overview and specific insight into nitrate salts for sensible and latent heat storage.
    Pfleger N; Bauer T; Martin C; Eck M; Wörner A
    Beilstein J Nanotechnol; 2015; 6():1487-97. PubMed ID: 26199853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-dispersible graphene quantum dots in ethylene glycol for direct absorption-based medium-temperature solar-thermal harvesting.
    Lin R; Zhang J; Shu L; Zhu J; Fu B; Song C; Shang W; Tao P; Deng T
    RSC Adv; 2020 Dec; 10(73):45028-45036. PubMed ID: 35516255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In Situ Production of Copper Oxide Nanoparticles in a Binary Molten Salt for Concentrated Solar Power Plant Applications.
    Lasfargues M; Stead G; Amjad M; Ding Y; Wen D
    Materials (Basel); 2017 May; 10(5):. PubMed ID: 28772910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synergistic Effects of Hybrid Carbonaceous Fillers of Carbon Fibers and Reduced Graphene Oxides on Enhanced Heat-Dissipation Capability of Polymer Composites.
    Lee YS; Yu J; Shim SE; Yang CM
    Polymers (Basel); 2020 Apr; 12(4):. PubMed ID: 32295199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent Advances in Molten Salt-Based Nanofluids as Thermal Energy Storage in Concentrated Solar Power: A Comprehensive Review.
    Abir FM; Altwarah Q; Rana MT; Shin D
    Materials (Basel); 2024 Feb; 17(4):. PubMed ID: 38399205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrothermal Synthesis of Graphene Quantum Dots Supported on Three-Dimensional Graphene for Supercapacitors.
    Luo P; Guan X; Yu Y; Li X; Yan F
    Nanomaterials (Basel); 2019 Feb; 9(2):. PubMed ID: 30720724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.