These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 32905445)

  • 1. Direct Visualization and Determination of the Multiple Exciton Generation Rate.
    Timmerman D; Matsubara E; Gomez L; Ashida M; Gregorkiewicz T; Fujiwara Y
    ACS Omega; 2020 Sep; 5(34):21506-21512. PubMed ID: 32905445
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hot exciton cooling and multiple exciton generation in PbSe quantum dots.
    Kumar M; Vezzoli S; Wang Z; Chaudhary V; Ramanujan RV; Gurzadyan GG; Bruno A; Soci C
    Phys Chem Chem Phys; 2016 Nov; 18(45):31107-31114. PubMed ID: 27812574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lead Telluride Quantum Dot Solar Cells Displaying External Quantum Efficiencies Exceeding 120%.
    Böhm ML; Jellicoe TC; Tabachnyk M; Davis NJ; Wisnivesky-Rocca-Rivarola F; Ducati C; Ehrler B; Bakulin AA; Greenham NC
    Nano Lett; 2015 Dec; 15(12):7987-93. PubMed ID: 26488847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrafast biexciton spectroscopy in semiconductor quantum dots: evidence for early emergence of multiple-exciton generation.
    Choi Y; Sim S; Lim SC; Lee YH; Choi H
    Sci Rep; 2013 Nov; 3():3206. PubMed ID: 24220495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intraband dynamics of mid-infrared HgTe quantum dots.
    Ruppert M; Bui H; Sagar LK; Geiregat P; Hens Z; Bester G; Huse N
    Nanoscale; 2022 Mar; 14(11):4123-4130. PubMed ID: 34874046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple exciton generation and recombination in carbon nanotubes and nanocrystals.
    Kanemitsu Y
    Acc Chem Res; 2013 Jun; 46(6):1358-66. PubMed ID: 23421584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low threshold and efficient multiple exciton generation in halide perovskite nanocrystals.
    Li M; Begum R; Fu J; Xu Q; Koh TM; Veldhuis SA; Grätzel M; Mathews N; Mhaisalkar S; Sum TC
    Nat Commun; 2018 Oct; 9(1):4197. PubMed ID: 30305633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced Multiple Exciton Generation in PbS|CdS Janus-like Heterostructured Nanocrystals.
    Kroupa DM; Pach GF; Vörös M; Giberti F; Chernomordik BD; Crisp RW; Nozik AJ; Johnson JC; Singh R; Klimov VI; Galli G; Beard MC
    ACS Nano; 2018 Oct; 12(10):10084-10094. PubMed ID: 30216045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exciton Cooling in 2D Perovskite Nanoplatelets: Rationalized Carrier-Induced Stark and Phonon Bottleneck Effects.
    Villamil Franco C; Trippé-Allard G; Mahler B; Cornaggia C; Lauret JS; Gustavsson T; Cassette E
    J Phys Chem Lett; 2022 Jan; 13(1):393-399. PubMed ID: 34985898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoinduced Single- and Multiple-Electron Dynamics Processes Enhanced by Quantum Confinement in Lead Halide Perovskite Quantum Dots.
    Vogel DJ; Kryjevski A; Inerbaev T; Kilin DS
    J Phys Chem Lett; 2017 Jul; 8(13):3032-3039. PubMed ID: 28325048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrafast exciton dynamics and light-driven H2 evolution in colloidal semiconductor nanorods and Pt-tipped nanorods.
    Wu K; Zhu H; Lian T
    Acc Chem Res; 2015 Mar; 48(3):851-9. PubMed ID: 25682713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hole Cooling Is Much Faster than Electron Cooling in PbSe Quantum Dots.
    Spoor FC; Kunneman LT; Evers WH; Renaud N; Grozema FC; Houtepen AJ; Siebbeles LD
    ACS Nano; 2016 Jan; 10(1):695-703. PubMed ID: 26654878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electron-Phonon Coupling and Resonant Relaxation from 1D and 1P States in PbS Quantum Dots.
    Kennehan ER; Doucette GS; Marshall AR; Grieco C; Munson KT; Beard MC; Asbury JB
    ACS Nano; 2018 Jun; 12(6):6263-6272. PubMed ID: 29792675
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple exciton generation and recombination dynamics in small Si and CdSe quantum dots: an ab initio time-domain study.
    Hyeon-Deuk K; Prezhdo OV
    ACS Nano; 2012 Feb; 6(2):1239-50. PubMed ID: 22214339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring exciton relaxation and multiexciton generation in PbSe nanocrystals using hyperspectral near-IR probing.
    Gdor I; Sachs H; Roitblat A; Strasfeld DB; Bawendi MG; Ruhman S
    ACS Nano; 2012 Apr; 6(4):3269-77. PubMed ID: 22390473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient charge-carrier extraction from Ag₂S quantum dots prepared by the SILAR method for utilization of multiple exciton generation.
    Zhang X; Liu J; Johansson EM
    Nanoscale; 2015 Jan; 7(4):1454-62. PubMed ID: 25504257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple exciton generation in cluster-free alloy Cd(x)Hg(1-x)Te colloidal quantum dots synthesized in water.
    Kershaw SV; Kalytchuk S; Zhovtiuk O; Shen Q; Oshima T; Yindeesuk W; Toyoda T; Rogach AL
    Phys Chem Chem Phys; 2014 Dec; 16(47):25710-22. PubMed ID: 24931359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of surface defects in multi-exciton generation of lead selenide and silicon semiconductor quantum dots.
    Jaeger HM; Fischer S; Prezhdo OV
    J Chem Phys; 2012 Feb; 136(6):064701. PubMed ID: 22360209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient Carrier Multiplication in Colloidal CuInSe2 Nanocrystals.
    Stolle CJ; Schaller RD; Korgel BA
    J Phys Chem Lett; 2014 Sep; 5(18):3169-74. PubMed ID: 26276328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiexciton absorption and multiple exciton generation in CdSe quantum dots.
    Franceschetti A; Zhang Y
    Phys Rev Lett; 2008 Apr; 100(13):136805. PubMed ID: 18517985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.