These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 32905527)

  • 1. Real Time HABs Mapping Using NASA Glenn Hyperspectral Imager.
    Sawtell RW; Anderson R; Tokars R; Lekki JD; Shuchman RA; Bosse KR; Sayers MJ
    J Great Lakes Res; 2019 Jun; 45(3):596-608. PubMed ID: 32905527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluating the portability of satellite derived chlorophyll-a algorithms for temperate inland lakes using airborne hyperspectral imagery and dense surface observations.
    Johansen R; Beck R; Nowosad J; Nietch C; Xu M; Shu S; Yang B; Liu H; Emery E; Reif M; Harwood J; Young J; Macke D; Martin M; Stillings G; Stumpf R; Su H
    Harmful Algae; 2018 Jun; 76():35-46. PubMed ID: 29887203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fishing in greener waters: Understanding the impact of harmful algal blooms on Lake Erie anglers and the potential for adoption of a forecast model.
    Gill D; Rowe M; Joshi SJ
    J Environ Manage; 2018 Dec; 227():248-255. PubMed ID: 30199720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced POLYMER atmospheric correction algorithm for water-leaving radiance retrievals from hyperspectral/multispectral remote sensing data in inland and coastal waters.
    Karthick M; Shanmugam P; He X
    Opt Express; 2024 Feb; 32(5):7659-7681. PubMed ID: 38439443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of satellite reflectance algorithms for estimating turbidity and cyanobacterial concentrations in productive freshwaters using hyperspectral aircraft imagery and dense coincident surface observations.
    Beck R; Xu M; Zhan S; Johansen R; Liu H; Tong S; Yang B; Shu S; Wu Q; Wang S; Berling K; Murray A; Emery E; Reif M; Harwood J; Young J; Nietch C; Macke D; Martin M; Stillings G; Stumpf R; Su H; Ye Z; Huang Y
    J Great Lakes Res; 2019 Jun; 45(3):413-433. PubMed ID: 32831462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Implementation of the directly-georeferenced hyperspectral point cloud.
    Inamdar D; Kalacska M; Leblanc G; Arroyo-Mora JP
    MethodsX; 2021; 8():101429. PubMed ID: 34434852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatiotemporal variability and environmental factors of harmful algal blooms (HABs) over western Lake Erie.
    Tian D; Xie G; Tian J; Tseng KH; Shum CK; Lee J; Liang S
    PLoS One; 2017; 12(6):e0179622. PubMed ID: 28658260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial and temporal patterns in the seasonal distribution of toxic cyanobacteria in Western Lake Erie from 2002-2014.
    Wynne TT; Stumpf RP
    Toxins (Basel); 2015 May; 7(5):1649-63. PubMed ID: 25985390
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A space-time geostatistical model for probabilistic estimation of harmful algal bloom biomass and areal extent.
    Fang S; Del Giudice D; Scavia D; Binding CE; Bridgeman TB; Chaffin JD; Evans MA; Guinness J; Johengen TH; Obenour DR
    Sci Total Environ; 2019 Dec; 695():133776. PubMed ID: 31426003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatio-temporal connectivity of the aquatic microbiome associated with cyanobacterial blooms along a Great Lake riverine-lacustrine continuum.
    Crevecoeur S; Edge TA; Watson LC; Watson SB; Greer CW; Ciborowski JJH; Diep N; Dove A; Drouillard KG; Frenken T; McKay RM; Zastepa A; Comte J
    Front Microbiol; 2023; 14():1073753. PubMed ID: 36846788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perspectives on Harmful Algal Blooms (HABs) and the Cyberbiosecurity of Freshwater Systems.
    Schmale DG; Ault AP; Saad W; Scott DT; Westrick JA
    Front Bioeng Biotechnol; 2019; 7():128. PubMed ID: 31231642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preliminary analysis to estimate the spatial distribution of benefits of P load reduction: Identifying the spatial influence of phosphorus loading from the Maumee River (USA) in western Lake Erie.
    Larson JH; Hlavacek E; DeJager N; Evans MA; Wynne T
    Ecol Evol; 2020 May; 10(9):3968-3976. PubMed ID: 32489624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CyanoTRACKER: A cloud-based integrated multi-platform architecture for global observation of cyanobacterial harmful algal blooms.
    Mishra DR; Kumar A; Ramaswamy L; Boddula VK; Das MC; Page BP; Weber SJ
    Harmful Algae; 2020 Jun; 96():101828. PubMed ID: 32560841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Lake Erie HABs Grab: A binational collaboration to characterize the western basin cyanobacterial harmful algal blooms at an unprecedented high-resolution spatial scale.
    Chaffin JD; Bratton JF; Verhamme EM; Bair HB; Beecher AA; Binding CE; Birbeck JA; Bridgeman TB; Chang X; Crossman J; Currie WJS; Davis TW; Dick GJ; Drouillard KG; Errera RM; Frenken T; MacIsaac HJ; McClure A; McKay RM; Reitz LA; Domingo JWS; Stanislawczyk K; Stumpf RP; Swan ZD; Snyder BK; Westrick JA; Xue P; Yancey CE; Zastepa A; Zhou X
    Harmful Algae; 2021 Aug; 108():102080. PubMed ID: 34588116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Harmful algal blooms in Cayuga lake, NY: From microbiome analysis to eDNA monitoring.
    Wang N; Mark N; Launer N; Hirtler A; Weston C; Cleckner L; Faehndrich C; LaGorga L; Xia L; Pyrek D; Penningroth SM; Richardson RE
    J Environ Manage; 2024 Mar; 354():120128. PubMed ID: 38382427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Digital Twin Lake Framework for Monitoring and Management of Harmful Algal Blooms.
    Qiu Y; Liu H; Liu J; Li D; Liu C; Liu W; Wang J; Jiao Y
    Toxins (Basel); 2023 Nov; 15(11):. PubMed ID: 37999528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Satellite remote sensing of harmful algal blooms (HABs) and a potential synthesized framework.
    Shen L; Xu H; Guo X
    Sensors (Basel); 2012; 12(6):7778-803. PubMed ID: 22969372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Remote sensing to detect harmful algal blooms in inland waterbodies.
    Liu S; Glamore W; Tamburic B; Morrow A; Johnson F
    Sci Total Environ; 2022 Dec; 851(Pt 1):158096. PubMed ID: 35987216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of harmful algal blooms from satellite-based inherent optical properties of the ocean in Paracas Bay - Peru.
    Paulino C; Sánchez S; Alburqueque E; Lorenzo A; Grados D
    Mar Pollut Bull; 2024 Apr; 201():116173. PubMed ID: 38382324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sub-monthly time scale forecasting of harmful algal blooms intensity in Lake Erie using remote sensing and machine learning.
    Gupta A; Hantush MM; Govindaraju RS
    Sci Total Environ; 2023 Nov; 900():165781. PubMed ID: 37499836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.