These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 32905664)

  • 1. Meta-analysis of multiple driver effects on marine phytoplankton highlights modulating role of pCO
    Seifert M; Rost B; Trimborn S; Hauck J
    Glob Chang Biol; 2020 Dec; 26(12):6787-6804. PubMed ID: 32905664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elemental stoichiometry of the key calcifying marine phytoplankton Emiliania huxleyi under ocean climate change: A meta-analysis.
    Sheward RM; Liefer JD; Irwin AJ; Finkel ZV
    Glob Chang Biol; 2023 Aug; 29(15):4259-4278. PubMed ID: 37279257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of multiple drivers of ocean global change on the physiology and functional gene expression of the coccolithophore Emiliania huxleyi.
    Feng Y; Roleda MY; Armstrong E; Summerfield TC; Law CS; Hurd CL; Boyd PW
    Glob Chang Biol; 2020 Oct; 26(10):5630-5645. PubMed ID: 32597547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Meta-analysis reveals enhanced growth of marine harmful algae from temperate regions with warming and elevated CO
    Brandenburg KM; Velthuis M; Van de Waal DB
    Glob Chang Biol; 2019 Aug; 25(8):2607-2618. PubMed ID: 31066967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction matters: Bottom-up driver interdependencies alter the projected response of phytoplankton communities to climate change.
    Seifert M; Nissen C; Rost B; Vogt M; Völker C; Hauck J
    Glob Chang Biol; 2023 Aug; 29(15):4234-4258. PubMed ID: 37265254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased intrusion of warming Atlantic water leads to rapid expansion of temperate phytoplankton in the Arctic.
    Neukermans G; Oziel L; Babin M
    Glob Chang Biol; 2018 Jun; 24(6):2545-2553. PubMed ID: 29394007
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Independence of nutrient limitation and carbon dioxide impacts on the Southern Ocean coccolithophore Emiliania huxleyi.
    Müller MN; Trull TW; Hallegraeff GM
    ISME J; 2017 Aug; 11(8):1777-1787. PubMed ID: 28430186
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Grear JS; Rynearson TA; Montalbano AL; Govenar B; Menden-Deuer S
    Estuar Coast Shelf Sci; 2017; 190():40-49. PubMed ID: 30820069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon assimilation and losses during an ocean acidification mesocosm experiment, with special reference to algal blooms.
    Liu N; Tong S; Yi X; Li Y; Li Z; Miao H; Wang T; Li F; Yan D; Huang R; Wu Y; Hutchins DA; Beardall J; Dai M; Gao K
    Mar Environ Res; 2017 Aug; 129():229-235. PubMed ID: 28641894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Faster Atlantic currents drive poleward expansion of temperate phytoplankton in the Arctic Ocean.
    Oziel L; Baudena A; Ardyna M; Massicotte P; Randelhoff A; Sallée JB; Ingvaldsen RB; Devred E; Babin M
    Nat Commun; 2020 Apr; 11(1):1705. PubMed ID: 32249780
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactive Effects of CO
    Laws EA; McClellan SA; Passow U
    J Phycol; 2020 Dec; 56(6):1614-1624. PubMed ID: 32750165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stable isotope fractionation of strontium in coccolithophore calcite: Influence of temperature and carbonate chemistry.
    Müller MN; Krabbenhöft A; Vollstaedt H; Brandini FP; Eisenhauer A
    Geobiology; 2018 May; 16(3):297-306. PubMed ID: 29431278
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coccolith volume of the Southern Ocean coccolithophore Emiliania huxleyi as a possible indicator for palaeo-cell volume.
    Müller MN; Brandini FP; Trull TW; Hallegraeff GM
    Geobiology; 2021 Jan; 19(1):63-74. PubMed ID: 32931664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Divergent fate of coccolithophores in a warming tropical ecosystem.
    Frada MJ; Keuter S; Koplovitz G; Avrahami Y
    Glob Chang Biol; 2022 Feb; 28(4):1560-1568. PubMed ID: 34808010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting Effects of Ocean Acidification and Warming on Algae Lacking Carbon Concentrating Mechanisms.
    Kübler JE; Dudgeon SR
    PLoS One; 2015; 10(7):e0132806. PubMed ID: 26172263
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic energy budget modeling reveals the potential of future growth and calcification for the coccolithophore Emiliania huxleyi in an acidified ocean.
    Muller EB; Nisbet RM
    Glob Chang Biol; 2014 Jun; 20(6):2031-8. PubMed ID: 24526588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Geographical CO
    Richier S; Achterberg EP; Humphreys MP; Poulton AJ; Suggett DJ; Tyrrell T; Moore CM
    Glob Chang Biol; 2018 Sep; 24(9):4438-4452. PubMed ID: 29799660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of species specific sensitivities to changing light and carbonate chemistry in calcifying marine phytoplankton.
    Gafar NA; Eyre BD; Schulz KG
    Sci Rep; 2019 Feb; 9(1):2486. PubMed ID: 30792404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zooplankton grazing pressure is insufficient for primary producer control under elevated warming and nutrient levels.
    Gusha MNC; Dalu T; Wasserman RJ; McQuaid CD
    Sci Total Environ; 2019 Feb; 651(Pt 1):410-418. PubMed ID: 30240923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulating the effects of light intensity and carbonate system composition on particulate organic and inorganic carbon production in Emiliania huxleyi.
    Holtz LM; Wolf-Gladrow D; Thoms S
    J Theor Biol; 2015 May; 372():192-204. PubMed ID: 25747776
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.