These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 32905664)

  • 21. Nutrient limitation suppresses the temperature dependence of phytoplankton metabolic rates.
    Marañón E; Lorenzo MP; Cermeño P; Mouriño-Carballido B
    ISME J; 2018 Jun; 12(7):1836-1845. PubMed ID: 29695860
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Combined effects of ocean acidification and warming on physiological response of the diatom Thalassiosira pseudonana to light challenges.
    Yuan W; Gao G; Shi Q; Xu Z; Wu H
    Mar Environ Res; 2018 Apr; 135():63-69. PubMed ID: 29397992
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Warming and CO
    Vaqué D; Lara E; Arrieta JM; Holding J; Sà EL; Hendriks IE; Coello-Camba A; Alvarez M; Agustí S; Wassmann PF; Duarte CM
    Front Microbiol; 2019; 10():494. PubMed ID: 30949141
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Long-term dynamics of adaptive evolution in a globally important phytoplankton species to ocean acidification.
    Schlüter L; Lohbeck KT; Gröger JP; Riebesell U; Reusch TB
    Sci Adv; 2016 Jul; 2(7):e1501660. PubMed ID: 27419227
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The acclimation process of phytoplankton biomass, carbon fixation and respiration to the combined effects of elevated temperature and pCO
    Gao G; Jin P; Liu N; Li F; Tong S; Hutchins DA; Gao K
    Mar Pollut Bull; 2017 May; 118(1-2):213-220. PubMed ID: 28259422
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phytoplankton community shift in response to experimental Cu addition at the elevated CO
    Sharma D; Biswas H; Chowdhury M; Silori S; Pandey M; Ray D
    Environ Sci Pollut Res Int; 2023 Jan; 30(3):7325-7344. PubMed ID: 36038690
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Predicting Effects of Ocean Acidification and Warming on Algae Lacking Carbon Concentrating Mechanisms.
    Kübler JE; Dudgeon SR
    PLoS One; 2015; 10(7):e0132806. PubMed ID: 26172263
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Emiliania huxleyi increases calcification but not expression of calcification-related genes in long-term exposure to elevated temperature and pCO2.
    Benner I; Diner RE; Lefebvre SC; Li D; Komada T; Carpenter EJ; Stillman JH
    Philos Trans R Soc Lond B Biol Sci; 2013; 368(1627):20130049. PubMed ID: 23980248
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Amplified Arctic warming by phytoplankton under greenhouse warming.
    Park JY; Kug JS; Bader J; Rolph R; Kwon M
    Proc Natl Acad Sci U S A; 2015 May; 112(19):5921-6. PubMed ID: 25902494
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Meta-analysis of the response of marine phytoplankton to nutrient addition and seawater warming.
    Wu X; Liu H; Ru Z; Tu G; Xing L; Ding Y
    Mar Environ Res; 2021 Jun; 168():105294. PubMed ID: 33770674
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Short- versus long-term responses to changing CO2 in a coastal dinoflagellate bloom: implications for interspecific competitive interactions and community structure.
    Tatters AO; Schnetzer A; Fu F; Lie AY; Caron DA; Hutchins DA
    Evolution; 2013 Jul; 67(7):1879-91. PubMed ID: 23815646
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Photosynthesis and calcification of the coccolithophore Emiliania huxleyi are more sensitive to changed levels of light and CO
    Zhang Y; Gao K
    J Photochem Photobiol B; 2021 Apr; 217():112145. PubMed ID: 33735745
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Direct and indirect effects of elevated CO2 are revealed through shifts in phytoplankton, copepod development, and fatty acid accumulation.
    McLaskey AK; Keister JE; Schoo KL; Olson MB; Love BA
    PLoS One; 2019; 14(3):e0213931. PubMed ID: 30870509
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High CO
    Mausz MA; Segovia M; Larsen A; Berger SA; Egge JK; Pohnert G
    Environ Microbiol; 2020 Sep; 22(9):3863-3882. PubMed ID: 32656913
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Iron limitation modulates ocean acidification effects on southern ocean phytoplankton communities.
    Hoppe CJ; Hassler CS; Payne CD; Tortell PD; Rost B; Trimborn S
    PLoS One; 2013; 8(11):e79890. PubMed ID: 24278207
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interacting effects of ocean acidification and warming on growth and DMS-production in the haptophyte coccolithophore Emiliania huxleyi.
    Arnold HE; Kerrison P; Steinke M
    Glob Chang Biol; 2013 Apr; 19(4):1007-16. PubMed ID: 23504879
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of increased pCO
    Fu X; Qin J; Ding C; Wei Y; Sun J
    Sci Total Environ; 2024 Mar; 918():170520. PubMed ID: 38309353
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of ocean acidification on the nutritional quality of marine phytoplankton for copepod reproduction.
    Meyers MT; Cochlan WP; Carpenter EJ; Kimmerer WJ
    PLoS One; 2019; 14(5):e0217047. PubMed ID: 31107897
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ocean acidification affects physiology of coccolithophore Emiliania huxleyi and weakens its mechanical resistance to copepods.
    Xu H; Liu H; Chen F; Zhang X; Zhang Z; Ma J; Pan K; Liu H
    Mar Environ Res; 2023 Nov; 192():106232. PubMed ID: 37866975
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Direct linkage between dimethyl sulfide production and microzooplankton grazing, resulting from prey composition change under high partial pressure of carbon dioxide conditions.
    Park KT; Lee K; Shin K; Yang EJ; Hyun B; Kim JM; Noh JH; Kim M; Kong B; Choi DH; Choi SJ; Jang PG; Jeong HJ
    Environ Sci Technol; 2014 May; 48(9):4750-6. PubMed ID: 24724561
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.