These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 32905976)

  • 1. Plan-view characterization of intergranular precipitates on grain boundaries by combination of FIB lift out method and TEM analyses: A case study in austenitic stainless steel.
    Sato K; Kaneko K; Hara T; Kawahara Y; Hamada JI; Takushima C; Teranishi R
    Micron; 2020 Nov; 138():102927. PubMed ID: 32905976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional studies of intergranular carbides in austenitic stainless steel.
    Ochi M; Kawano R; Maeda T; Sato Y; Teranishi R; Hara T; Kikuchi M; Kaneko K
    Microscopy (Oxf); 2017 Apr; 66(2):89-94. PubMed ID: 27927874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Situ Study of Precipitates' Effect on Grain Deformation Behavior and Mechanical Properties of S31254 Super Austenitic Stainless Steel.
    Ma J; Tan H; Dong N; Gao J; Wang P; Wang Z; Han P
    Materials (Basel); 2024 Jun; 17(11):. PubMed ID: 38893942
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Grain Size Effect on the Hot Ductility of High-Nitrogen Austenitic Stainless Steel in the Presence of Precipitates.
    Wang Z; Wang Y; Wang C
    Materials (Basel); 2018 Jun; 11(6):. PubMed ID: 29914141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-scale characterization by FIB-SEM/TEM/3DAP.
    Ohkubo T; Sepehri-Amin H; Sasaki TT; Hono K
    Microscopy (Oxf); 2014 Nov; 63 Suppl 1():i6-i7. PubMed ID: 25359845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recrystallisation behaviour of a fully austenitic Nb-stabilised stainless steel.
    Barcellini C; Dumbill S; Jimenez-Melero E
    J Microsc; 2019 Apr; 274(1):3-12. PubMed ID: 30561019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiscale correlative tomography: an investigation of creep cavitation in 316 stainless steel.
    Slater TJA; Bradley RS; Bertali G; Geurts R; Northover SM; Burke MG; Haigh SJ; Burnett TL; Withers PJ
    Sci Rep; 2017 Aug; 7(1):7332. PubMed ID: 28779097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystallographic Evaluation of Susceptibility to Intergranular Corrosion in Austenitic Stainless Steel with Various Degrees of Sensitization.
    Fujii T; Furumoto T; Tohgo K; Shimamura Y
    Materials (Basel); 2020 Jan; 13(3):. PubMed ID: 32019096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ observation of intergranular crack nucleation in a grain boundary controlled austenitic stainless steel.
    Rahimi S; Engelberg DL; Duff JA; Marrow TJ
    J Microsc; 2009 Mar; 233(3):423-31. PubMed ID: 19250463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TEM characterization of the artefacts induced by FIB in austenitic stainless steel.
    Andrzejczuk M; Płociński T; Zieliński W; Kurzydłowski KJ
    J Microsc; 2010 Mar; 237(3):439-42. PubMed ID: 20500414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EBSD and TEM investigation of the hot deformation substructure characteristics of a type 316L austenitic stainless steel.
    Cizek P; Whiteman JA; Rainforth WM; Beynon JH
    J Microsc; 2004 Mar; 213(3):285-95. PubMed ID: 15009696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atomic layer deposited Al
    Gurrentz JM; Jarvis KA; Gearba-Dolocan IR; Rose MJ
    Ultramicroscopy; 2022 Sep; 239():113562. PubMed ID: 35675735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Specimen preparation for correlating transmission electron microscopy and atom probe tomography of mesoscale features.
    Hartshorne MI; Isheim D; Seidman DN; Taheri ML
    Ultramicroscopy; 2014 Dec; 147():25-32. PubMed ID: 24976357
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Intergranular Corrosion Susceptibility of Metastable Austenitic Cr⁻Mn⁻Ni⁻N⁻Cu High-Strength Stainless Steel under Various Heat Treatments.
    Liu G; Liu Y; Cheng Y; Li J; Jiang Y
    Materials (Basel); 2019 Apr; 12(9):. PubMed ID: 31035439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined EBSD/EDS tomography in a dual-beam FIB/FEG-SEM.
    West GD; Thomson RC
    J Microsc; 2009 Mar; 233(3):442-50. PubMed ID: 19250465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using transmission Kikuchi diffraction to study intergranular stress corrosion cracking in type 316 stainless steels.
    Meisnar M; Vilalta-Clemente A; Gholinia A; Moody M; Wilkinson AJ; Huin N; Lozano-Perez S
    Micron; 2015 Aug; 75():1-10. PubMed ID: 25974882
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of Grain Boundary Network and Improvement of Intergranular Cracking Resistance in 316L Stainless Steel after Grain Boundary Engineering.
    Liu T; Xia S; Bai Q; Zhou B; Lu Y; Shoji T
    Materials (Basel); 2019 Jan; 12(2):. PubMed ID: 30642063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy dispersive spectroscopy analysis of aluminium segregation in silicon carbide grain boundaries.
    Zhang XF; Yang Q; De Jonghe LC; Zhang Z
    J Microsc; 2002 Jul; 207(Pt 1):58-68. PubMed ID: 12135460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An improved method to identify grain boundary creep cavitation in 316H austenitic stainless steel.
    Chen B; Flewitt PE; Smith DJ; Jones CP
    Ultramicroscopy; 2011 Apr; 111(5):309-13. PubMed ID: 21396524
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct measurement of TEM lamella thickness in FIB-SEM.
    Conlan AP; Tillotson E; Rakowski A; Cooper D; Haigh SJ
    J Microsc; 2020 Sep; 279(3):168-176. PubMed ID: 31823368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.