These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 32906069)

  • 1. Changes in layers of laboratory vermicomposting using spent mushroom substrate of Agaricus subrufescens P.
    Hřebečková T; Wiesnerová L; Hanč A
    J Environ Manage; 2020 Dec; 276():111340. PubMed ID: 32906069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Change in agrochemical and biochemical parameters during the laboratory vermicomposting of spent mushroom substrate after cultivation of Pleurotus ostreatus.
    Hřebečková T; Wiesnerová L; Hanč A
    Sci Total Environ; 2020 Oct; 739():140085. PubMed ID: 32554113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of spent mushroom substrates from Agaricus subrufescens (syn. A. blazei, A. brasiliensis) and Lentinula edodes productions in the enrichment of a soil-based potting media for lettuce (Lactuca sativa) cultivation: Growth promotion and soil bioremediation.
    Ribas LC; de Mendonça MM; Camelini CM; Soares CH
    Bioresour Technol; 2009 Oct; 100(20):4750-7. PubMed ID: 19467593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Problems associated with vermicomposting of dog excrement in practice using
    Hřebečková T; Králíková N; Hanč A; Wiesnerová L
    Waste Manag Res; 2023 Feb; 41(2):328-336. PubMed ID: 36128623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vermicomposting of sludge from a malt house.
    Hanc A; Hrebeckova T; Pliva P; Cajthaml T
    Waste Manag; 2020 Dec; 118():232-240. PubMed ID: 32898776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in microbial dynamics during vermicomposting of fresh and composted sewage sludge.
    Villar I; Alves D; Pérez-Díaz D; Mato S
    Waste Manag; 2016 Feb; 48():409-417. PubMed ID: 26489796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of different lipid contents on growth of earthworms and the products during vermicomposting.
    Wu Z; Yin B; Song X; Zhao Q
    Waste Manag Res; 2019 Sep; 37(9):934-940. PubMed ID: 31328677
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of earthworms on nitrification and ammonia oxidizers in vermicomposting systems for recycling of fruit and vegetable wastes.
    Huang K; Xia H; Cui G; Li F
    Sci Total Environ; 2017 Feb; 578():337-345. PubMed ID: 27842968
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of earthworms on physicochemical properties and microbial profiles during vermicomposting of fresh fruit and vegetable wastes.
    Huang K; Li F; Wei Y; Fu X; Chen X
    Bioresour Technol; 2014 Oct; 170():45-52. PubMed ID: 25118152
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of a vertical-flow windrow vermicomposting system.
    Hanc A; Castkova T; Kuzel S; Cajthaml T
    Waste Manag Res; 2017 Nov; 35(11):1121-1128. PubMed ID: 28816085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Co-composting with cow dung and subsequent vermicomposting improve compost quality of spent mushroom.
    Yu X; Li X; Ren C; Wang J; Wang C; Zou Y; Wang X; Li G; Li Q
    Bioresour Technol; 2022 Aug; 358():127386. PubMed ID: 35636680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Product quality and microbial dynamics during vermicomposting and maturation of compost from pig manure.
    Villar I; Alves D; Mato S
    Waste Manag; 2017 Nov; 69():498-507. PubMed ID: 28844437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Eisenia fetida (Oligochaeta, Lumbricidae) activates fungal growth, triggering cellulose decomposition during vermicomposting.
    Aira M; Monroy F; Domínguez J
    Microb Ecol; 2006 Nov; 52(4):738-47. PubMed ID: 16944346
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spent mushroom substrate and cattle manure amendments enhance the transformation of garden waste into vermicomposts using the earthworm Eisenia fetida.
    Gong X; Li S; Carson MA; Chang SX; Wu Q; Wang L; An Z; Sun X
    J Environ Manage; 2019 Oct; 248():109263. PubMed ID: 31336340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stabilization of different starting materials through vermicomposting in a continuous-feeding system: Changes in chemical and biological parameters.
    García-Sánchez M; Taušnerová H; Hanč A; Tlustoš P
    Waste Manag; 2017 Apr; 62():33-42. PubMed ID: 28215973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes of bacterial and fungal community compositions during vermicomposting of vegetable wastes by Eisenia foetida.
    Huang K; Li F; Wei Y; Chen X; Fu X
    Bioresour Technol; 2013 Dec; 150():235-41. PubMed ID: 24177156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quality of Vermicompost and Microbial Community Diversity Affected by the Contrasting Temperature during Vermicomposting of Dewatered Sludge.
    Zhang H; Li J; Zhang Y; Huang K
    Int J Environ Res Public Health; 2020 Mar; 17(5):. PubMed ID: 32156070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical and microbiological changes during vermicomposting of coffee pulp using exotic (Eudrilus eugeniae) and native earthworm (Perionyx ceylanesis) species.
    Raphael K; Velmourougane K
    Biodegradation; 2011 Jun; 22(3):497-507. PubMed ID: 20922463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Change of the parameters of layers in a large-scale grape marc vermicomposting system with continuous feeding.
    Částková T; Hanč A
    Waste Manag Res; 2019 Aug; 37(8):826-832. PubMed ID: 30632934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in the nutrient dynamics and microbiological properties of grape marc in a continuous-feeding vermicomposting system.
    Gómez-Brandón M; Martínez-Cordeiro H; Domínguez J
    Waste Manag; 2021 Nov; 135():1-10. PubMed ID: 34455333
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.