BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 32906088)

  • 1. Comparison of 11 automated PET segmentation methods in lymphoma.
    Weisman AJ; Kieler MW; Perlman S; Hutchings M; Jeraj R; Kostakoglu L; Bradshaw TJ
    Phys Med Biol; 2020 Nov; 65(23):235019. PubMed ID: 32906088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated quantification of baseline imaging PET metrics on FDG PET/CT images of pediatric Hodgkin lymphoma patients.
    Weisman AJ; Kim J; Lee I; McCarten KM; Kessel S; Schwartz CL; Kelly KM; Jeraj R; Cho SY; Bradshaw TJ
    EJNMMI Phys; 2020 Dec; 7(1):76. PubMed ID: 33315178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fully automatic segmentation of diffuse large B cell lymphoma lesions on 3D FDG-PET/CT for total metabolic tumour volume prediction using a convolutional neural network.
    Blanc-Durand P; Jégou S; Kanoun S; Berriolo-Riedinger A; Bodet-Milin C; Kraeber-Bodéré F; Carlier T; Le Gouill S; Casasnovas RO; Meignan M; Itti E
    Eur J Nucl Med Mol Imaging; 2021 May; 48(5):1362-1370. PubMed ID: 33097974
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of Semiautomatic and Deep Learning-Based Fully Automatic Segmentation Methods on [
    Constantino CS; Leocádio S; Oliveira FPM; Silva M; Oliveira C; Castanheira JC; Silva Â; Vaz S; Teixeira R; Neves M; Lúcio P; João C; Costa DC
    J Digit Imaging; 2023 Aug; 36(4):1864-1876. PubMed ID: 37059891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reproducibility of F18-FDG PET radiomic features for different cervical tumor segmentation methods, gray-level discretization, and reconstruction algorithms.
    Altazi BA; Zhang GG; Fernandez DC; Montejo ME; Hunt D; Werner J; Biagioli MC; Moros EG
    J Appl Clin Med Phys; 2017 Nov; 18(6):32-48. PubMed ID: 28891217
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Impact of Semiautomatic Segmentation Methods on Metabolic Tumor Volume, Intensity, and Dissemination Radiomics in
    Driessen J; Zwezerijnen GJC; Schöder H; Drees EEE; Kersten MJ; Moskowitz AJ; Moskowitz CH; Eertink JJ; Vet HCW; Hoekstra OS; Zijlstra JM; Boellaard R
    J Nucl Med; 2022 Sep; 63(9):1424-1430. PubMed ID: 34992152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validation of a Multifocal Segmentation Method for Measuring Metabolic Tumor Volume in Hodgkin Lymphoma.
    Camacho MR; Etchebehere E; Tardelli N; Delamain MT; Vercosa AFA; Takahashi MES; Brunetto SQ; Metze IGHL; Souza CA; Cerci JJ; Ramos CD
    J Nucl Med Technol; 2020 Mar; 48(1):30-35. PubMed ID: 31604902
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Sibille L; Seifert R; Avramovic N; Vehren T; Spottiswoode B; Zuehlsdorff S; Schäfers M
    Radiology; 2020 Feb; 294(2):445-452. PubMed ID: 31821122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of
    Weber M; Jentzen W; Hofferber R; Herrmann K; Fendler WP; Rischpler C; Umutlu L; Conti M; Costa PF; Sraieb M; Kersting D
    BMC Cancer; 2021 Jan; 21(1):62. PubMed ID: 33446147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A convolutional neural network with self-attention for fully automated metabolic tumor volume delineation of head and neck cancer in [Formula: see text]F]FDG PET/CT.
    Nikulin P; Zschaeck S; Maus J; Cegla P; Lombardo E; Furth C; Kaźmierska J; Rogasch JMM; Holzgreve A; Albert NL; Ferentinos K; Strouthos I; Hajiyianni M; Marschner SN; Belka C; Landry G; Cholewinski W; Kotzerke J; Hofheinz F; van den Hoff J
    Eur J Nucl Med Mol Imaging; 2023 Jul; 50(9):2751-2766. PubMed ID: 37079128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validation of Convolutional Neural Networks for Fast Determination of Whole-Body Metabolic Tumor Burden in Pediatric Lymphoma.
    Etchebehere E; Andrade R; Camacho M; Lima M; Brink A; Cerci J; Nadel H; Bal C; Rangarajan V; Pfluger T; Kagna O; Alonso O; Begum FK; Mir KB; Magboo VP; Menezes LJ; Paez D; Pascual TN
    J Nucl Med Technol; 2022 Sep; 50(3):256-262. PubMed ID: 35440476
    [No Abstract]   [Full Text] [Related]  

  • 12. 18F-FDG PET/CT Metabolic Tumor Volume and Intratumoral Heterogeneity in Pancreatic Adenocarcinomas: Impact of Dual-Time Point and Segmentation Methods.
    Mena E; Sheikhbahaei S; Taghipour M; Jha AK; Vicente E; Xiao J; Subramaniam RM
    Clin Nucl Med; 2017 Jan; 42(1):e16-e21. PubMed ID: 27819858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Just another "Clever Hans"? Neural networks and FDG PET-CT to predict the outcome of patients with breast cancer.
    Weber M; Kersting D; Umutlu L; Schäfers M; Rischpler C; Fendler WP; Buvat I; Herrmann K; Seifert R
    Eur J Nucl Med Mol Imaging; 2021 Sep; 48(10):3141-3150. PubMed ID: 33674891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative Radiomics Features in Diffuse Large B-Cell Lymphoma: Does Segmentation Method Matter?
    Eertink JJ; Pfaehler EAG; Wiegers SE; van T; Brug D; Lugtenburg PJ; Hoekstra OS; Zijlstra JM; de Vet HCW; Boellaard R
    J Nucl Med; 2022 Mar; 63(3):389-395. PubMed ID: 34272315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of different automated lesion delineation methods for metabolic tumor volume of 18F-FDG PET/CT in patients with stage I lung adenocarcinoma.
    Wang XY; Zhao YF; Liu Y; Yang YK; Zhu Z; Wu N
    Medicine (Baltimore); 2017 Dec; 96(51):e9365. PubMed ID: 29390527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of different segmentation algorithms on metabolic tumor volume measured on 18F-FDG PET/CT of cervical primary squamous cell carcinoma.
    Xu W; Yu S; Ma Y; Liu C; Xin J
    Nucl Med Commun; 2017 Mar; 38(3):259-265. PubMed ID: 28118260
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 18F-FDG PET/CT of Non-Small Cell Lung Carcinoma Under Neoadjuvant Chemotherapy: Background-Based Adaptive-Volume Metrics Outperform TLG and MTV in Predicting Histopathologic Response.
    Burger IA; Casanova R; Steiger S; Husmann L; Stolzmann P; Huellner MW; Curioni A; Hillinger S; Schmidtlein CR; Soltermann A
    J Nucl Med; 2016 Jun; 57(6):849-54. PubMed ID: 26823566
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic detection and classification of regions of FDG uptake in whole-body PET-CT lymphoma studies.
    Bi L; Kim J; Kumar A; Wen L; Feng D; Fulham M
    Comput Med Imaging Graph; 2017 Sep; 60():3-10. PubMed ID: 27955798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interobserver Agreement on Automated Metabolic Tumor Volume Measurements of Deauville Score 4 and 5 Lesions at Interim
    Zwezerijnen GJC; Eertink JJ; Burggraaff CN; Wiegers SE; Shaban EAIN; Pieplenbosch S; Oprea-Lager DE; Lugtenburg PJ; Hoekstra OS; de Vet HCW; Zijlstra JM; Boellaard R
    J Nucl Med; 2021 Nov; 62(11):1531-1536. PubMed ID: 33674403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated Segmentation of Baseline Metabolic Total Tumor Burden in Diffuse Large B-Cell Lymphoma: Which Method Is Most Successful? A Study on Behalf of the PETRA Consortium.
    Barrington SF; Zwezerijnen BGJC; de Vet HCW; Heymans MW; Mikhaeel NG; Burggraaff CN; Eertink JJ; Pike LC; Hoekstra OS; Zijlstra JM; Boellaard R
    J Nucl Med; 2021 Mar; 62(3):332-337. PubMed ID: 32680929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.