These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 32906088)
1. Comparison of 11 automated PET segmentation methods in lymphoma. Weisman AJ; Kieler MW; Perlman S; Hutchings M; Jeraj R; Kostakoglu L; Bradshaw TJ Phys Med Biol; 2020 Nov; 65(23):235019. PubMed ID: 32906088 [TBL] [Abstract][Full Text] [Related]
2. Automated quantification of baseline imaging PET metrics on FDG PET/CT images of pediatric Hodgkin lymphoma patients. Weisman AJ; Kim J; Lee I; McCarten KM; Kessel S; Schwartz CL; Kelly KM; Jeraj R; Cho SY; Bradshaw TJ EJNMMI Phys; 2020 Dec; 7(1):76. PubMed ID: 33315178 [TBL] [Abstract][Full Text] [Related]
3. Fully automatic segmentation of diffuse large B cell lymphoma lesions on 3D FDG-PET/CT for total metabolic tumour volume prediction using a convolutional neural network. Blanc-Durand P; Jégou S; Kanoun S; Berriolo-Riedinger A; Bodet-Milin C; Kraeber-Bodéré F; Carlier T; Le Gouill S; Casasnovas RO; Meignan M; Itti E Eur J Nucl Med Mol Imaging; 2021 May; 48(5):1362-1370. PubMed ID: 33097974 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of Semiautomatic and Deep Learning-Based Fully Automatic Segmentation Methods on [ Constantino CS; Leocádio S; Oliveira FPM; Silva M; Oliveira C; Castanheira JC; Silva Â; Vaz S; Teixeira R; Neves M; Lúcio P; João C; Costa DC J Digit Imaging; 2023 Aug; 36(4):1864-1876. PubMed ID: 37059891 [TBL] [Abstract][Full Text] [Related]
5. Reproducibility of F18-FDG PET radiomic features for different cervical tumor segmentation methods, gray-level discretization, and reconstruction algorithms. Altazi BA; Zhang GG; Fernandez DC; Montejo ME; Hunt D; Werner J; Biagioli MC; Moros EG J Appl Clin Med Phys; 2017 Nov; 18(6):32-48. PubMed ID: 28891217 [TBL] [Abstract][Full Text] [Related]
6. The Impact of Semiautomatic Segmentation Methods on Metabolic Tumor Volume, Intensity, and Dissemination Radiomics in Driessen J; Zwezerijnen GJC; Schöder H; Drees EEE; Kersten MJ; Moskowitz AJ; Moskowitz CH; Eertink JJ; Vet HCW; Hoekstra OS; Zijlstra JM; Boellaard R J Nucl Med; 2022 Sep; 63(9):1424-1430. PubMed ID: 34992152 [TBL] [Abstract][Full Text] [Related]
7. Interobserver Agreement on Automated Metabolic Tumor Volume Measurements of Deauville Score 4 and 5 Lesions at Interim Zwezerijnen GJC; Eertink JJ; Burggraaff CN; Wiegers SE; Shaban EAIN; Pieplenbosch S; Oprea-Lager DE; Lugtenburg PJ; Hoekstra OS; de Vet HCW; Zijlstra JM; Boellaard R J Nucl Med; 2021 Nov; 62(11):1531-1536. PubMed ID: 33674403 [TBL] [Abstract][Full Text] [Related]
8. Validation of a Multifocal Segmentation Method for Measuring Metabolic Tumor Volume in Hodgkin Lymphoma. Camacho MR; Etchebehere E; Tardelli N; Delamain MT; Vercosa AFA; Takahashi MES; Brunetto SQ; Metze IGHL; Souza CA; Cerci JJ; Ramos CD J Nucl Med Technol; 2020 Mar; 48(1):30-35. PubMed ID: 31604902 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of Weber M; Jentzen W; Hofferber R; Herrmann K; Fendler WP; Rischpler C; Umutlu L; Conti M; Costa PF; Sraieb M; Kersting D BMC Cancer; 2021 Jan; 21(1):62. PubMed ID: 33446147 [TBL] [Abstract][Full Text] [Related]
11. A convolutional neural network with self-attention for fully automated metabolic tumor volume delineation of head and neck cancer in [Formula: see text]F]FDG PET/CT. Nikulin P; Zschaeck S; Maus J; Cegla P; Lombardo E; Furth C; Kaźmierska J; Rogasch JMM; Holzgreve A; Albert NL; Ferentinos K; Strouthos I; Hajiyianni M; Marschner SN; Belka C; Landry G; Cholewinski W; Kotzerke J; Hofheinz F; van den Hoff J Eur J Nucl Med Mol Imaging; 2023 Jul; 50(9):2751-2766. PubMed ID: 37079128 [TBL] [Abstract][Full Text] [Related]
12. Validation of Convolutional Neural Networks for Fast Determination of Whole-Body Metabolic Tumor Burden in Pediatric Lymphoma. Etchebehere E; Andrade R; Camacho M; Lima M; Brink A; Cerci J; Nadel H; Bal C; Rangarajan V; Pfluger T; Kagna O; Alonso O; Begum FK; Mir KB; Magboo VP; Menezes LJ; Paez D; Pascual TN J Nucl Med Technol; 2022 Sep; 50(3):256-262. PubMed ID: 35440476 [No Abstract] [Full Text] [Related]
13. 18F-FDG PET/CT Metabolic Tumor Volume and Intratumoral Heterogeneity in Pancreatic Adenocarcinomas: Impact of Dual-Time Point and Segmentation Methods. Mena E; Sheikhbahaei S; Taghipour M; Jha AK; Vicente E; Xiao J; Subramaniam RM Clin Nucl Med; 2017 Jan; 42(1):e16-e21. PubMed ID: 27819858 [TBL] [Abstract][Full Text] [Related]
14. Just another "Clever Hans"? Neural networks and FDG PET-CT to predict the outcome of patients with breast cancer. Weber M; Kersting D; Umutlu L; Schäfers M; Rischpler C; Fendler WP; Buvat I; Herrmann K; Seifert R Eur J Nucl Med Mol Imaging; 2021 Sep; 48(10):3141-3150. PubMed ID: 33674891 [TBL] [Abstract][Full Text] [Related]
15. Quantitative Radiomics Features in Diffuse Large B-Cell Lymphoma: Does Segmentation Method Matter? Eertink JJ; Pfaehler EAG; Wiegers SE; van T; Brug D; Lugtenburg PJ; Hoekstra OS; Zijlstra JM; de Vet HCW; Boellaard R J Nucl Med; 2022 Mar; 63(3):389-395. PubMed ID: 34272315 [TBL] [Abstract][Full Text] [Related]
16. Comparison of different automated lesion delineation methods for metabolic tumor volume of 18F-FDG PET/CT in patients with stage I lung adenocarcinoma. Wang XY; Zhao YF; Liu Y; Yang YK; Zhu Z; Wu N Medicine (Baltimore); 2017 Dec; 96(51):e9365. PubMed ID: 29390527 [TBL] [Abstract][Full Text] [Related]
17. Effect of different segmentation algorithms on metabolic tumor volume measured on 18F-FDG PET/CT of cervical primary squamous cell carcinoma. Xu W; Yu S; Ma Y; Liu C; Xin J Nucl Med Commun; 2017 Mar; 38(3):259-265. PubMed ID: 28118260 [TBL] [Abstract][Full Text] [Related]
18. 18F-FDG PET/CT of Non-Small Cell Lung Carcinoma Under Neoadjuvant Chemotherapy: Background-Based Adaptive-Volume Metrics Outperform TLG and MTV in Predicting Histopathologic Response. Burger IA; Casanova R; Steiger S; Husmann L; Stolzmann P; Huellner MW; Curioni A; Hillinger S; Schmidtlein CR; Soltermann A J Nucl Med; 2016 Jun; 57(6):849-54. PubMed ID: 26823566 [TBL] [Abstract][Full Text] [Related]
19. Automatic detection and classification of regions of FDG uptake in whole-body PET-CT lymphoma studies. Bi L; Kim J; Kumar A; Wen L; Feng D; Fulham M Comput Med Imaging Graph; 2017 Sep; 60():3-10. PubMed ID: 27955798 [TBL] [Abstract][Full Text] [Related]
20. Automated Segmentation of Baseline Metabolic Total Tumor Burden in Diffuse Large B-Cell Lymphoma: Which Method Is Most Successful? A Study on Behalf of the PETRA Consortium. Barrington SF; Zwezerijnen BGJC; de Vet HCW; Heymans MW; Mikhaeel NG; Burggraaff CN; Eertink JJ; Pike LC; Hoekstra OS; Zijlstra JM; Boellaard R J Nucl Med; 2021 Mar; 62(3):332-337. PubMed ID: 32680929 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]