These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 32906088)
21. A multi-label CNN model for the automatic detection and segmentation of gliomas using [ Rahimpour M; Boellaard R; Jentjens S; Deckers W; Goffin K; Koole M Eur J Nucl Med Mol Imaging; 2023 Jul; 50(8):2441-2452. PubMed ID: 36933075 [TBL] [Abstract][Full Text] [Related]
22. 18F-FDG PET/CT in primary brain lymphoma. Albano D; Bosio G; Bertoli M; Giubbini R; Bertagna F J Neurooncol; 2018 Feb; 136(3):577-583. PubMed ID: 29147860 [TBL] [Abstract][Full Text] [Related]
23. Computer-aided detection and segmentation of malignant melanoma lesions on whole-body Dirks I; Keyaerts M; Neyns B; Vandemeulebroucke J Comput Methods Programs Biomed; 2022 Jun; 221():106902. PubMed ID: 35636357 [TBL] [Abstract][Full Text] [Related]
24. Automated quantification of reference levels in liver and mediastinal blood pool for the Deauville therapy response classification using FDG-PET/CT in Hodgkin and non-Hodgkin lymphomas. Sadik M; Lind E; Polymeri E; Enqvist O; Ulén J; Trägårdh E Clin Physiol Funct Imaging; 2019 Jan; 39(1):78-84. PubMed ID: 30284376 [TBL] [Abstract][Full Text] [Related]
25. TMTV-Net: fully automated total metabolic tumor volume segmentation in lymphoma PET/CT images - a multi-center generalizability analysis. Yousefirizi F; Klyuzhin IS; O JH; Harsini S; Tie X; Shiri I; Shin M; Lee C; Cho SY; Bradshaw TJ; Zaidi H; Bénard F; Sehn LH; Savage KJ; Steidl C; Uribe CF; Rahmim A Eur J Nucl Med Mol Imaging; 2024 Jun; 51(7):1937-1954. PubMed ID: 38326655 [TBL] [Abstract][Full Text] [Related]
26. The correlation of Qu YH; Long N; Ran C; Sun J Clin Transl Oncol; 2021 Mar; 23(3):620-627. PubMed ID: 32683540 [TBL] [Abstract][Full Text] [Related]
28. A 3D deep convolutional neural network approach for the automated measurement of cerebellum tracer uptake in FDG PET-CT scans. Xiong X; Linhardt TJ; Liu W; Smith BJ; Sun W; Bauer C; Sunderland JJ; Graham MM; Buatti JM; Beichel RR Med Phys; 2020 Mar; 47(3):1058-1066. PubMed ID: 31855287 [TBL] [Abstract][Full Text] [Related]
30. Deep learning for segmentation of 49 selected bones in CT scans: First step in automated PET/CT-based 3D quantification of skeletal metastases. Lindgren Belal S; Sadik M; Kaboteh R; Enqvist O; Ulén J; Poulsen MH; Simonsen J; Høilund-Carlsen PF; Edenbrandt L; Trägårdh E Eur J Radiol; 2019 Apr; 113():89-95. PubMed ID: 30927965 [TBL] [Abstract][Full Text] [Related]
31. Evaluation of the prognostic value of different methods of calculating the tumour metabolic volume with Guzmán Ortiz S; Mucientes Rasilla J; Vargas Núñez JA; Royuela A; Navarro Matilla B; Mitjavila Casanovas M Rev Esp Med Nucl Imagen Mol (Engl Ed); 2020; 39(6):340-346. PubMed ID: 32646783 [TBL] [Abstract][Full Text] [Related]
32. Baseline Total Metabolic Tumor Volume Measured with Fixed or Different Adaptive Thresholding Methods Equally Predicts Outcome in Peripheral T Cell Lymphoma. Cottereau AS; Hapdey S; Chartier L; Modzelewski R; Casasnovas O; Itti E; Tilly H; Vera P; Meignan MA; Becker S J Nucl Med; 2017 Feb; 58(2):276-281. PubMed ID: 27754905 [TBL] [Abstract][Full Text] [Related]
33. Association between textural and morphological tumor indices on baseline PET-CT and early metabolic response on interim PET-CT in bulky malignant lymphomas. Ben Bouallègue F; Tabaa YA; Kafrouni M; Cartron G; Vauchot F; Mariano-Goulart D Med Phys; 2017 Sep; 44(9):4608-4619. PubMed ID: 28513853 [TBL] [Abstract][Full Text] [Related]
34. Does enhanced CT influence the biological GTV measurement on FDG-PET images? Vera P; Modzelewski R; Hapdey S; Gouel P; Tilly H; Jardin F; Ruan S; Gardin I Radiother Oncol; 2013 Jul; 108(1):86-90. PubMed ID: 23618503 [TBL] [Abstract][Full Text] [Related]
35. Evaluation of a convolution neural network for baseline total tumor metabolic volume on [ Karimdjee M; Delaby G; Huglo D; Baillet C; Willaume A; Dujardin S; Bailliez A Eur Radiol; 2023 May; 33(5):3386-3395. PubMed ID: 36600126 [TBL] [Abstract][Full Text] [Related]
36. Impact of consensus contours from multiple PET segmentation methods on the accuracy of functional volume delineation. Schaefer A; Vermandel M; Baillet C; Dewalle-Vignion AS; Modzelewski R; Vera P; Massoptier L; Parcq C; Gibon D; Fechter T; Nemer U; Gardin I; Nestle U Eur J Nucl Med Mol Imaging; 2016 May; 43(5):911-924. PubMed ID: 26567163 [TBL] [Abstract][Full Text] [Related]
38. Variability and Repeatability of Quantitative Uptake Metrics in Zhuang M; García DV; Kramer GM; Frings V; Smit EF; Dierckx R; Hoekstra OS; Boellaard R J Nucl Med; 2019 May; 60(5):600-607. PubMed ID: 30389824 [TBL] [Abstract][Full Text] [Related]
39. Dual time-point FDG PET/CT and FDG uptake and related enzymes in lymphadenopathies: preliminary results. Christlieb SB; Strandholdt CN; Olsen BB; Mylam KJ; Larsen TS; Nielsen AL; Rohde M; Gerke O; Olsen KE; Møller MB; Kristensen BW; Abildgaard N; Alavi A; Høilund-Carlsen PF Eur J Nucl Med Mol Imaging; 2016 Sep; 43(10):1824-36. PubMed ID: 27102266 [TBL] [Abstract][Full Text] [Related]
40. Prognostic value of metabolic tumor volume and total lesion glycolysis from ¹⁸F-FDG PET/CT in lymph node metastases and risk stratification of endometrial carcinoma. Liu DD; Li J; Li X; Xie L; Qin L; Peng F; Cheng MH J Gynecol Oncol; 2019 Nov; 30(6):e89. PubMed ID: 31576685 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]