These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 32906101)

  • 1. Density functional study of gallium clusters on graphene: electronic doping and diffusion.
    Nezval D; Bartošík M; Mach J; Piastek J; Švarc V; Konečný M; Šikola T
    J Phys Condens Matter; 2021 Jan; 33(2):025002. PubMed ID: 32906101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electronic transport properties of graphene doped by gallium.
    Mach J; Procházka P; Bartošík M; Nezval D; Piastek J; Hulva J; Švarc V; Konečný M; Kormoš L; Šikola T
    Nanotechnology; 2017 Oct; 28(41):415203. PubMed ID: 28813368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contrasting diffusion behaviors of O and F atoms on graphene and within bilayer graphene.
    Yi S; Choi JH; Kim HJ; Park CH; Cho JH
    Phys Chem Chem Phys; 2017 Mar; 19(13):9107-9112. PubMed ID: 28318001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. First principles calculations of phenol adsorption on pristine and group III (B, Al, Ga) doped graphene layers.
    Avila Y; Cocoletzi GH; Romero MT
    J Mol Model; 2014 Feb; 20(2):2112. PubMed ID: 24526382
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Small gold clusters on graphene, their mobility and clustering: a DFT study.
    Amft M; Sanyal B; Eriksson O; Skorodumova NV
    J Phys Condens Matter; 2011 May; 23(20):205301. PubMed ID: 21540499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DFT study of water on graphene: Synergistic effect of multilayer p-doping.
    Nezval D; Bartošík M; Mach J; Švarc V; Konečný M; Piastek J; Špaček O; Šikola T
    J Chem Phys; 2023 Dec; 159(21):. PubMed ID: 38047516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neutral and charged gallium clusters: structures, physical properties and implications for the melting features.
    Núñez S; López JM; Aguado A
    Nanoscale; 2012 Oct; 4(20):6481-92. PubMed ID: 22961013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Schottky barrier modulation of a GaTe/graphene heterostructure by interlayer distance and perpendicular electric field.
    Li H; Zhou Z; Zhang K; Wang H
    Nanotechnology; 2019 Oct; 30(40):405207. PubMed ID: 31247615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tailoring the Structural and Electronic Properties of Graphene through Ion Implantation.
    Ren F; Yao M; Li M; Wang H
    Materials (Basel); 2021 Sep; 14(17):. PubMed ID: 34501170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gate-voltage control of oxygen diffusion on graphene.
    Suarez AM; Radovic LR; Bar-Ziv E; Sofo JO
    Phys Rev Lett; 2011 Apr; 106(14):146802. PubMed ID: 21561210
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical reactivity and band-gap opening of graphene doped with gallium, germanium, arsenic, and selenium atoms.
    Denis PA
    Chemphyschem; 2014 Dec; 15(18):3994-4000. PubMed ID: 25349028
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interlayer coupling and electric field tunable electronic properties and Schottky barrier in a graphene/bilayer-GaSe van der Waals heterostructure.
    Phuc HV; Hieu NN; Hoi BD; Nguyen CV
    Phys Chem Chem Phys; 2018 Jul; 20(26):17899-17908. PubMed ID: 29926024
    [TBL] [Abstract][Full Text] [Related]  

  • 13. First-principles calculations on the deposition behavior of Li
    Shen D; Liu Y; Li M; Dong W; Yang F; Wang L; Yang S; Sun W
    Phys Chem Chem Phys; 2021 Oct; 23(38):21817-21824. PubMed ID: 34553716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of graphene with Au
    Murugesan R; Meng R; de Volder A; Keijers W; Janssens E; van de Vondel J; Afanasiev V; Houssa M
    J Phys Condens Matter; 2022 Aug; 34(40):. PubMed ID: 35856847
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Au
    Libeert G; Murugesan R; Guba M; Keijers W; Collienne S; Raes B; Brems S; De Gendt S; Silhanek AV; Höltzl T; Houssa M; Van de Vondel J; Janssens E
    Nanoscale; 2022 Sep; 14(34):12437-12446. PubMed ID: 35979747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunable band gaps in graphene/GaN van der Waals heterostructures.
    Huang L; Yue Q; Kang J; Li Y; Li J
    J Phys Condens Matter; 2014 Jul; 26(29):295304. PubMed ID: 24981081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decorating graphene with size-selected few-atom clusters: a novel approach to investigate graphene-adparticle interactions.
    Scheerder JE; Picot T; Reckinger N; Sneyder T; Zharinov VS; Colomer JF; Janssens E; Van de Vondel J
    Nanoscale; 2017 Jul; 9(29):10494-10501. PubMed ID: 28703819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorbed Molecules as Interchangeable Dopants and Scatterers with a Van der Waals Bonding Memory in Graphene Sensors.
    Agbonlahor OG; Muruganathan M; Imamura T; Mizuta H
    ACS Sens; 2020 Jul; 5(7):2003-2009. PubMed ID: 32597169
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photocatalytic properties of graphene-supported titania clusters from density-functional theory.
    Badalov SV; Wilhelm R; Schmidt WG
    J Comput Chem; 2020 Aug; 41(21):1921-1930. PubMed ID: 32542776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulating the Nanomechanical Response of Cyclooctatetraene Molecules on a Graphene Device.
    Oh S; Crommie MF; Cohen ML
    ACS Nano; 2019 Feb; 13(2):1713-1718. PubMed ID: 30702863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.