These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 32906103)

  • 1. Decoding the covert shift of spatial attention from electroencephalographic signals permits reliable control of a brain-computer interface.
    Reichert C; Dürschmid S; Bartsch MV; Hopf JM; Heinze HJ; Hinrichs H
    J Neural Eng; 2020 Oct; 17(5):056012. PubMed ID: 32906103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of Stimulus Features on the Performance of a Gaze-Independent Brain-Computer Interface Based on Covert Spatial Attention Shifts.
    Reichert C; Tellez Ceja IF; Sweeney-Reed CM; Heinze HJ; Hinrichs H; Dürschmid S
    Front Neurosci; 2020; 14():591777. PubMed ID: 33335470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correcting for ERP latency jitter improves gaze-independent BCI decoding.
    Van Den Kerchove A; Si-Mohammed H; Van Hulle MM; Cabestaing F
    J Neural Eng; 2024 Jul; 21(4):. PubMed ID: 38959876
    [No Abstract]   [Full Text] [Related]  

  • 4. Spatial Decoding for Gaze Independent Brain-Computer Interface Based on Covert Visual Attention Shift Using Electroencephalography.
    Chugh N; Aggarwal S
    Clin EEG Neurosci; 2024 Jul; 55(4):477-485. PubMed ID: 38311896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An online brain-computer interface based on shifting attention to concurrent streams of auditory stimuli.
    Hill NJ; Schölkopf B
    J Neural Eng; 2012 Apr; 9(2):026011. PubMed ID: 22333135
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward a reliable gaze-independent hybrid BCI combining visual and natural auditory stimuli.
    Barbosa S; Pires G; Nunes U
    J Neurosci Methods; 2016 Mar; 261():47-61. PubMed ID: 26687642
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving the performance of a gaze independent P300-BCI by using the expectancy wave.
    Xu W; Gao P; He F; Qi H
    J Neural Eng; 2022 Apr; 19(2):. PubMed ID: 35325878
    [No Abstract]   [Full Text] [Related]  

  • 8. Spatial localization in target detection based on decoding N2pc component.
    Wang Y; Luo Z; Zhao S; Xie L; Xu M; Ming D; Yin E
    J Neurosci Methods; 2022 Mar; 369():109440. PubMed ID: 34979193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast detection of covert visuospatial attention using hybrid N2pc and SSVEP features.
    Xu M; Wang Y; Nakanishi M; Wang YT; Qi H; Jung TP; Ming D
    J Neural Eng; 2016 Dec; 13(6):066003. PubMed ID: 27705952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust detection of event-related potentials in a user-voluntary short-term imagery task.
    Lee MH; Williamson J; Kee YJ; Fazli S; Lee SW
    PLoS One; 2019; 14(12):e0226236. PubMed ID: 31877161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving the performance of P300-based BCIs by mitigating the effects of stimuli-related evoked potentials through regularized spatial filtering.
    Mobaien A; Boostani R; Sanei S
    J Neural Eng; 2024 Feb; 21(1):. PubMed ID: 38295418
    [No Abstract]   [Full Text] [Related]  

  • 12. Covert visuospatial attention orienting in a brain-computer interface for amyotrophic lateral sclerosis patients.
    Marchetti M; Piccione F; Silvoni S; Gamberini L; Priftis K
    Neurorehabil Neural Repair; 2013 Jun; 27(5):430-8. PubMed ID: 23353184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of P300 latency jitter on event related potential-based brain-computer interface performance.
    Aricò P; Aloise F; Schettini F; Salinari S; Mattia D; Cincotti F
    J Neural Eng; 2014 Jun; 11(3):035008. PubMed ID: 24835331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decoding auditory attention from single-trial EEG for a high-efficiency brain-computer interface.
    An WW; Pei A; Noyce AL; Shinn-Cunningham B
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3456-3459. PubMed ID: 33018747
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A gaze independent hybrid-BCI based on visual spatial attention.
    Egan JM; Loughnane GM; Fletcher H; Meade E; Lalor EC
    J Neural Eng; 2017 Aug; 14(4):046006. PubMed ID: 28513478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards a gaze-independent hybrid-BCI based on SSVEPs, alpha-band modulations and the P300.
    Loughnane GM; Meade E; Reilly RB; Lalor EC
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():1322-5. PubMed ID: 25570211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single stimulus location for two inputs: A combined brain-computer interface based on Steady-State Visual Evoked Potential (SSVEP).
    Wang L; Zhang Z; Han D; Zhang Z; Liu Z; Liu W
    Eur J Neurosci; 2021 Feb; 53(3):861-875. PubMed ID: 33128787
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visual field inhomogeneous in brain-computer interfaces based on rapid serial visual presentation.
    Zhang S; Chen X; Wang Y; Liu B; Gao X
    J Neural Eng; 2022 Feb; 19(1):. PubMed ID: 35016160
    [No Abstract]   [Full Text] [Related]  

  • 19. Phase-Spatial Beamforming Renders a Visual Brain Computer Interface Capable of Exploiting EEG Electrode Phase Shifts in Motion-Onset Target Responses.
    Libert A; Wittevrongel B; Camarrone F; Van Hulle MM
    IEEE Trans Biomed Eng; 2022 May; 69(5):1802-1812. PubMed ID: 34932468
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compact convolutional neural networks for classification of asynchronous steady-state visual evoked potentials.
    Waytowich N; Lawhern VJ; Garcia JO; Cummings J; Faller J; Sajda P; Vettel JM
    J Neural Eng; 2018 Dec; 15(6):066031. PubMed ID: 30279309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.