BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 32906641)

  • 1. Fabrication and Microstructure of ZnO/HA Composite with In Situ Formation of Second-Phase ZnO.
    Yuan S; Ma Y; Li X; Ma Z; Yang H; Mu L
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32906641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microstructures and mechanical properties of in situ TiC-β-Ti-Nb composites with ultrafine grains fabricated by high-pressure sintering.
    Liu Z; Zhang DC; Gong LJ; Lin JG; Wen C
    Sci Rep; 2018 Jun; 8(1):9496. PubMed ID: 29934506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Comparative Study of Pressureless Sintered Nanostructured Hydroxyapatite/TiO₂ Composites Prepared by Different TiO₂ Addition Methods.
    Yao HL; Yang C; Zhang MX; Liu D; Hu XZ; Wang HT
    J Nanosci Nanotechnol; 2020 Apr; 20(4):2442-2451. PubMed ID: 31492260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved dispersion of SiC whisker in nano hydroxyapatite and effect of atmospheres on sintering of the SiC whisker reinforced nano hydroxyapatite composites.
    Zhao X; Yang J; Xin H; Wang X; Zhang L; He F; Liu Q; Zhang W
    Mater Sci Eng C Mater Biol Appl; 2018 Oct; 91():135-145. PubMed ID: 30033240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microstructure and Mechanical Properties of Graphene-Reinforced Titanium Matrix/Nano-Hydroxyapatite Nanocomposites.
    Li F; Jiang X; Shao Z; Zhu D; Zhu M
    Materials (Basel); 2018 Apr; 11(4):. PubMed ID: 29659504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication and mechanical evaluation of hydroxyapatite/oxide nano-composite materials.
    Mohamed KR; Beherei HH; El Bassyouni GT; El Mahallawy N
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4126-32. PubMed ID: 23910323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An investigation of the chemical synthesis and high-temperature sintering behaviour of calcium hydroxyapatite (HA) and tricalcium phosphate (TCP) bioceramics.
    Cüneyt Taş A; Korkusuz F; Timuçin M; Akkaş N
    J Mater Sci Mater Med; 1997 Feb; 8(2):91-6. PubMed ID: 15348776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of Hydroxyapatite/Tantalum Composites by Pressureless Sintering in Different Atmosphere.
    Cai C; Wang X; Li B; Dong K; Shen Y; Li Z; Shen L
    ACS Omega; 2021 May; 6(19):12831-12840. PubMed ID: 34056434
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laminated and functionally graded hydroxyapatite/yttria stabilized tetragonal zirconia composites fabricated by spark plasma sintering.
    Guo H; Khor KA; Boey YC; Miao X
    Biomaterials; 2003 Feb; 24(4):667-75. PubMed ID: 12437961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microstructure and Mechanical Properties of Nano-Carbon Reinforced Titanium Matrix/Hydroxyapatite Biocomposites Prepared by Spark Plasma Sintering.
    Li F; Jiang X; Shao Z; Zhu D; Luo Z
    Nanomaterials (Basel); 2018 Sep; 8(9):. PubMed ID: 30223566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pulse Plasma Sintering of NiAl-Al
    Konopka K; Zygmuntowicz J; Krasnowski M; Cymerman K; Wachowski M; Piotrkiewicz P
    Materials (Basel); 2022 Jan; 15(2):. PubMed ID: 35057124
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microstructure and property evolutions of titanium/nano-hydroxyapatite composites in-situ prepared by selective laser melting.
    Han C; Wang Q; Song B; Li W; Wei Q; Wen S; Liu J; Shi Y
    J Mech Behav Biomed Mater; 2017 Jul; 71():85-94. PubMed ID: 28267662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of powder properties on sintering, microstructure, mechanical strength and degradability of beta-tricalcium phosphate/calcium silicate composite bioceramics.
    Lin K; Chang J; Shen R
    Biomed Mater; 2009 Dec; 4(6):065009. PubMed ID: 19966383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microstructure, Mechanical Properties and Tribological Properties of NiAlComposites Reinforced by CrMnFeCoNiHigh-Entropy Alloy.
    Zhou S; Liu X; Xu Y
    Materials (Basel); 2018 Sep; 11(10):. PubMed ID: 30274154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of a hard tissue replacement using natural hydroxyapatite derived from bovine bones by thermal decomposition method.
    Hosseinzadeh E; Davarpanah M; Hassanzadeh Nemati N; Tavakoli SA
    Int J Organ Transplant Med; 2014; 5(1):23-31. PubMed ID: 25013675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impedance spectroscopy and mechanical response of porous nanophase hydroxyapatite-barium titanate composite.
    Dubey AK; Kakimoto K
    Mater Sci Eng C Mater Biol Appl; 2016 Jun; 63():211-21. PubMed ID: 27040213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of varying Al2O3 percentage in hydroxyapatite/Al2O3 composite materials: morphological, chemical and cytotoxic evaluation.
    Epure LM; Dimitrievska S; Merhi Y; Yahia L'
    J Biomed Mater Res A; 2007 Dec; 83(4):1009-1023. PubMed ID: 17584892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of ZnO Nanograins by Immersing Zn Powders in Oxalic Acid Solution Plus Thermal Decomposition.
    Xu C; Wang J; Wang Y
    J Nanosci Nanotechnol; 2015 Dec; 15(12):10002-7. PubMed ID: 26682445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microstructure Evolution and Properties of an In-Situ Nano-Gd
    Cao H; Zhan Z; Lv X
    Materials (Basel); 2021 Sep; 14(17):. PubMed ID: 34501109
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improvement of the mechanical properties and corrosion resistance of biodegradable β-Ca
    Yan Y; Kang Y; Li D; Yu K; Xiao T; Deng Y; Dai H; Dai Y; Xiong H; Fang H
    Mater Sci Eng C Mater Biol Appl; 2017 May; 74():582-596. PubMed ID: 28254333
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.