These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 32906861)

  • 1. Optical Fermi level-tuned plasmonic coupling in a grating-assisted graphene nanoribbon system.
    Xu H; He Z; Chen Z; Nie G; Li H
    Opt Express; 2020 Aug; 28(18):25767-25777. PubMed ID: 32906861
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual Tunable Electromagnetically Induced Transparency Based on a Grating-Assisted Double-Layer Graphene Hybrid Structure at Terahertz Frequencies.
    Zhong X; Wu T; Liu Z; Yang D; Yang Z; Liu R; Liu Y; Wang J
    Nanomaterials (Basel); 2022 Nov; 12(21):. PubMed ID: 36364629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tunable plasmonically induced transparency with giant group delay in gain-assisted graphene metamaterials.
    Zeng Y; Ling ZX; Liu GD; Wang LL; Lin Q
    Opt Express; 2022 Apr; 30(9):14103-14111. PubMed ID: 35473161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multipolar Plasmonic Resonances of Aluminum Nanoantenna Tuned by Graphene.
    Yan Z; Zhu Q; Lu X; Du W; Pu X; Hu T; Yu L; Huang Z; Cai P; Tang C
    Nanomaterials (Basel); 2021 Jan; 11(1):. PubMed ID: 33451028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tunable plasmon-induced transparency with a dielectric grating-coupled graphene structure for slowing terahertz waves.
    Wang T; Yan F; Wang R; Tian F; Li L
    Appl Opt; 2020 Aug; 59(24):7179-7185. PubMed ID: 32902480
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual tunable plasmon-induced transparency based on silicon-air grating coupled graphene structure in terahertz metamaterial.
    Xu H; Li H; He Z; Chen Z; Zheng M; Zhao M
    Opt Express; 2017 Aug; 25(17):20780-20790. PubMed ID: 29041756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamical manipulation of a dual-polarization plasmon-induced transparency employing an anisotropic graphene-black phosphorus heterostructure.
    Luo P; Wei W; Lan G; Wei X; Meng L; Liu Y; Yi J; Han G
    Opt Express; 2021 Sep; 29(19):29690-29703. PubMed ID: 34614709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamically controllable multi-switch and slow light based on a pyramid-shaped monolayer graphene metamaterial.
    Xiong C; Chao L; Zeng B; Wu K; Li M; Ruan B; Zhang B; Gao E; Li H
    Phys Chem Chem Phys; 2021 Feb; 23(6):3949-3962. PubMed ID: 33544099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tunable dual plasmon-induced transparency based on a monolayer graphene metamaterial and its terahertz sensing performance.
    Ge J; You C; Feng H; Li X; Wang M; Dong L; Veronis G; Yun M
    Opt Express; 2020 Oct; 28(21):31781-31795. PubMed ID: 33115144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Excitation of plasmonic waves in graphene by guided-mode resonances.
    Gao W; Shu J; Qiu C; Xu Q
    ACS Nano; 2012 Sep; 6(9):7806-13. PubMed ID: 22862147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene-based electromagnetically induced transparency with coupling Fabry-Perot resonators.
    Zhuang H; Kong F; Li K; Sheng S
    Appl Opt; 2015 Aug; 54(24):7455-61. PubMed ID: 26368785
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polarization-sensitive multi-frequency switches and high-performance slow light based on quadruple plasmon-induced transparency in a patterned graphene-based terahertz metamaterial.
    Li Y; Xu Y; Jiang J; Cheng S; Yi Z; Xiao G; Zhou X; Wang Z; Chen Z
    Phys Chem Chem Phys; 2023 Feb; 25(5):3820-3833. PubMed ID: 36645136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Localized plasmonic field enhancement in shaped graphene nanoribbons.
    Xia SX; Zhai X; Wang LL; Lin Q; Wen SC
    Opt Express; 2016 Jul; 24(15):16336-48. PubMed ID: 27464087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmonic bandpass filter based on graphene nanoribbon.
    Zhuang H; Kong F; Li K; Sheng S
    Appl Opt; 2015 Apr; 54(10):2558-64. PubMed ID: 25967159
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Slow-light effects based on the tunable Fano resonance in a Tamm state coupled graphene surface plasmon system.
    Ruan B; Li M; Liu C; Gao E; Zhang Z; Chang X; Zhang B; Li H
    Phys Chem Chem Phys; 2023 Jan; 25(3):1685-1689. PubMed ID: 36541662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybrid Metal Graphene-Based Tunable Plasmon-Induced Transparency in Terahertz Metasurface.
    Wang X; Meng H; Deng S; Lao C; Wei Z; Wang F; Tan C; Huang X
    Nanomaterials (Basel); 2019 Mar; 9(3):. PubMed ID: 30845741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Graphene Multiple Fano Resonances Based on Asymmetric Hybrid Metamaterial.
    Yan Z; Zhang Z; Du W; Wu W; Hu T; Yu Z; Gu P; Chen J; Tang C
    Nanomaterials (Basel); 2020 Dec; 10(12):. PubMed ID: 33276469
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual-channel optical switch, refractive index sensor and slow light device based on a graphene metasurface.
    Jiang X; Chen D; Zhang Z; Huang J; Wen K; He J; Yang J
    Opt Express; 2020 Nov; 28(23):34079-34092. PubMed ID: 33182885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Absorption and slow-light analysis based on tunable plasmon-induced transparency in patterned graphene metamaterial.
    Zhang B; Li H; Xu H; Zhao M; Xiong C; Liu C; Wu K
    Opt Express; 2019 Feb; 27(3):3598-3608. PubMed ID: 30732376
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graphene-based active slow surface plasmon polaritons.
    Lu H; Zeng C; Zhang Q; Liu X; Hossain MM; Reineck P; Gu M
    Sci Rep; 2015 Feb; 5():8443. PubMed ID: 25676462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.