BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 32906877)

  • 1. Sample induced intensity variations of localized surface plasmon resonance in tip-enhanced Raman spectroscopy.
    Zhang J; Youssef AH; Dörfler A; Kolhatkar G; Merlen A; Ruediger A
    Opt Express; 2020 Aug; 28(18):25998-26006. PubMed ID: 32906877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Topography-induced variations of localized surface plasmon resonance in tip-enhanced Raman configuration.
    Youssef AH; Zhang J; Dörfler A; Kolhatkar G; Merlen A; Ruediger A
    Opt Express; 2020 Apr; 28(9):14161-14168. PubMed ID: 32403876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ evaluation of plasmonic enhancement of gold tips for plasmon-enhanced imaging techniques.
    Zhang J; Ruediger A
    Rev Sci Instrum; 2021 May; 92(5):053004. PubMed ID: 34243334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Permittivity imaged at the nanoscale using tip-enhanced Raman spectroscopy.
    Plathier J; Krayev A; Gavrilyuk V; Pignolet A; Ruediger A
    Nanoscale Horiz; 2017 Nov; 2(6):365-369. PubMed ID: 32260667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanofabrication of plasmon-tunable nanoantennas for tip-enhanced Raman spectroscopy.
    Oliveira BS; Archanjo BS; Valaski R; Achete CA; Cançado LG; Jorio A; Vasconcelos TL
    J Chem Phys; 2020 Sep; 153(11):114201. PubMed ID: 32962365
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Near field plasmonic gradient effects on high vacuum tip-enhanced Raman spectroscopy.
    Fang Y; Zhang Z; Chen L; Sun M
    Phys Chem Chem Phys; 2015 Jan; 17(2):783-94. PubMed ID: 25424492
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calculated shape dependence of electromagnetic field in tip-enhanced Raman scattering by using a monopole antenna model.
    Kitahama Y; Itoh T; Suzuki T
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 May; 197():142-147. PubMed ID: 29339023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facilitating Hotspot Alignment in Tip-Enhanced Raman Spectroscopy via the Silver Photoluminescence of the Probe.
    Fan Y; Jin D; Wu X; Fang H; Yuan X
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33238402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative analysis of polarization-controlled tip-enhanced Raman imaging through the evaluation of the tip dipole.
    Mino T; Saito Y; Verma P
    ACS Nano; 2014 Oct; 8(10):10187-95. PubMed ID: 25171468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controllable plasmon-induced catalytic reaction by surface-enhanced and tip-enhanced Raman spectroscopy.
    Liu Y; Zhao Y; Zhang L; Yan Y; Jiang Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Aug; 219():539-546. PubMed ID: 31078821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tuning the resonance frequency of Ag-coated dielectric tips.
    Cui X; Zhang W; Yeo BS; Zenobi R; Hafner C; Erni D
    Opt Express; 2007 Jun; 15(13):8309-16. PubMed ID: 19547160
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rational fabrication of silver-coated AFM TERS tips with a high enhancement and long lifetime.
    Huang TX; Li CW; Yang LK; Zhu JF; Yao X; Liu C; Lin KQ; Zeng ZC; Wu SS; Wang X; Yang FZ; Ren B
    Nanoscale; 2018 Mar; 10(9):4398-4405. PubMed ID: 29451566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tuning Localized Surface Plasmon Resonance in Scanning Near-Field Optical Microscopy Probes.
    Vasconcelos TL; Archanjo BS; Fragneaud B; Oliveira BS; Riikonen J; Li C; Ribeiro DS; Rabelo C; Rodrigues WN; Jorio A; Achete CA; Cançado LG
    ACS Nano; 2015 Jun; 9(6):6297-304. PubMed ID: 26027751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Near-field chemical mapping of gold nanostructures using a functionalized scanning probe.
    Dab C; Awada C; Merlen A; Ruediger A
    Phys Chem Chem Phys; 2017 Nov; 19(46):31063-31071. PubMed ID: 29159349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation on tip enhanced Raman spectra of graphene.
    Li X; Liu Y; Zeng Z; Wang P; Fang Y; Zhang L
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Feb; 190():378-382. PubMed ID: 28950229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical antennas with multiple plasmonic nanoparticles for tip-enhanced Raman microscopy.
    Taguchi A; Yu J; Verma P; Kawata S
    Nanoscale; 2015 Nov; 7(41):17424-33. PubMed ID: 26439510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a candidate reference sample for the characterization of tip-enhanced Raman spectroscopy spatial resolution.
    Sacco A; Imbraguglio D; Giovannozzi AM; Portesi C; Rossi AM
    RSC Adv; 2018 Aug; 8(49):27863-27869. PubMed ID: 35542714
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resolving the Correlation between Tip-Enhanced Resonance Raman Scattering and Local Electronic States with 1 nm Resolution.
    Liu S; Müller M; Sun Y; Hamada I; Hammud A; Wolf M; Kumagai T
    Nano Lett; 2019 Aug; 19(8):5725-5731. PubMed ID: 31361964
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlling the Resonance Raman Effect in Tip-Enhanced Raman Spectroscopy Using a Thin Insulating Film.
    Jaculbia R; Hayazawa N; Imada H; Kim Y
    Appl Spectrosc; 2020 Nov; 74(11):1391-1397. PubMed ID: 32524828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface- and tip-enhanced resonant Raman scattering from CdSe nanocrystals.
    Sheremet E; Milekhin AG; Rodriguez RD; Weiss T; Nesterov M; Rodyakina EE; Gordan OD; Sveshnikova LL; Duda TA; Gridchin VA; Dzhagan VM; Hietschold M; Zahn DR
    Phys Chem Chem Phys; 2015 Sep; 17(33):21198-203. PubMed ID: 25566587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.