These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 32906902)

  • 1. Deep residual learning for low-order wavefront sensing in high-contrast imaging systems.
    Allan G; Kang I; Douglas ES; Barbastathis G; Cahoy K
    Opt Express; 2020 Aug; 28(18):26267-26283. PubMed ID: 32906902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep learning wavefront sensing.
    Nishizaki Y; Valdivia M; Horisaki R; Kitaguchi K; Saito M; Tanida J; Vera E
    Opt Express; 2019 Jan; 27(1):240-251. PubMed ID: 30645371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correction of non-common path aberrations in pyramid wavefront sensors to recover the optimal magnitude gain using a deformable lens.
    Quintavalla M; Bergomi M; Magrin D; Bonora S; Ragazzoni R
    Appl Opt; 2020 Jun; 59(17):5151-5157. PubMed ID: 32543534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonlinear wavefront reconstruction with convolutional neural networks for Fourier-based wavefront sensors.
    Landman R; Haffert SY
    Opt Express; 2020 May; 28(11):16644-16657. PubMed ID: 32549483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct wavefront sensing with a plenoptic sensor based on deep learning.
    Chen H; Zhang H; He Y; Wei L; Yang J; Li X; Huang L; Wei K
    Opt Express; 2023 Mar; 31(6):10320-10332. PubMed ID: 37157581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of a global algorithm for wavefront reconstruction for Shack-Hartmann wave-front sensors and thick fundus reflectors.
    Liu T; Thibos L; Marin G; Hernandez M
    Ophthalmic Physiol Opt; 2014 Jan; 34(1):63-72. PubMed ID: 24325435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Object-independent image-based wavefront sensing approach using phase diversity images and deep learning.
    Xin Q; Ju G; Zhang C; Xu S
    Opt Express; 2019 Sep; 27(18):26102-26119. PubMed ID: 31510471
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An all-photonic focal-plane wavefront sensor.
    Norris BRM; Wei J; Betters CH; Wong A; Leon-Saval SG
    Nat Commun; 2020 Oct; 11(1):5335. PubMed ID: 33087712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural networks for image-based wavefront sensing for astronomy.
    Andersen T; Owner-Petersen M; Enmark A
    Opt Lett; 2019 Sep; 44(18):4618-4621. PubMed ID: 31517947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zernike polynomial fitting fails to represent all visually significant corneal aberrations.
    Smolek MK; Klyce SD
    Invest Ophthalmol Vis Sci; 2003 Nov; 44(11):4676-81. PubMed ID: 14578385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exascale integrated modeling of low-order wavefront sensing and control for the Roman Coronagraph instrument.
    Dube BD; Riggs AJ; Kern BD; Cady EJ; Krist JE; Zhou H; Nemati B; Seo BJ; Steeves J; Arndt D; Mandić M; Shields J; Boussalis D; Valverde A; Rahman Z; Fathpour N
    J Opt Soc Am A Opt Image Sci Vis; 2022 Dec; 39(12):C133-C142. PubMed ID: 36520751
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-shot wavefront sensing with deep neural networks for free-space optical communications.
    Wang M; Guo W; Yuan X
    Opt Express; 2021 Feb; 29(3):3465-3478. PubMed ID: 33770944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lossy wavefront sensing and correction of distorted laser beams.
    Wu C; Ko J; Davis CC
    Appl Opt; 2020 Jan; 59(3):817-824. PubMed ID: 32225223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative comparison of different-shaped wavefront sensors and preliminary results for defocus aberrations on a mechanical eye.
    Carvalho LA; Chamon W; Schor P; Castro JC
    Arq Bras Oftalmol; 2006; 69(2):239-47. PubMed ID: 16699677
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Constrained matched filtering for extended dynamic range and improved noise rejection for Shack-Hartmann wavefront sensing.
    Gilles L; Ellerbroek BL
    Opt Lett; 2008 May; 33(10):1159-61. PubMed ID: 18483545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of wavefront distortion for wavefront sensorless adaptive optics based on deep learning.
    Li Y; Yue D; He Y
    Appl Opt; 2022 May; 61(14):4168-4176. PubMed ID: 36256094
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Residual higher-order aberrations caused by clinically measured cyclotorsional misalignment or decentration during wavefront-guided excimer laser corneal ablation.
    Wang L; Koch DD
    J Cataract Refract Surg; 2008 Dec; 34(12):2057-62. PubMed ID: 19027559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Boosting the deep learning wavefront sensor for real-time applications [Invited].
    Vera E; Guzmán F; Weinberger C
    Appl Opt; 2021 Apr; 60(10):B119-B124. PubMed ID: 33798145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Curvature wavefront sensing based on a single defocused image and intensity compensation.
    Wu Z; Bai H; Cui X
    Appl Opt; 2016 Apr; 55(10):2791-9. PubMed ID: 27139686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved two-step optimization procedure used for designing an apodizer and Lyot stop in the Lyot coronagraph.
    Ge R; Zhao H; Wei JX; Duan YQ; Bai Z; Li C; Wang YB; Fan XW
    Appl Opt; 2020 Jun; 59(16):4939-4952. PubMed ID: 32543491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.