These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. Focus engineering based on analytical formulae for tightly focused polarized beams with arbitrary geometric configurations of linear polarization. Man Z; Fu S; Wei G J Opt Soc Am A Opt Image Sci Vis; 2017 Aug; 34(8):1384-1391. PubMed ID: 29036105 [TBL] [Abstract][Full Text] [Related]
9. Highly localized continuous wave optical vortex with controllable orbital angular momentum orientation and topological charge. Zeng Y; Chen J; Teng H; Mo D; Wu P; Chen M; Yu Y; Zhan Q Opt Express; 2023 Oct; 31(21):34503-34513. PubMed ID: 37859205 [TBL] [Abstract][Full Text] [Related]
10. Paraxial and tightly focused behaviour of the double ring perfect optical vortex. Rickenstorff C; Gómez-Pavón LDC; Sosa-Sánchez CT; Silva-Ortigoza G Opt Express; 2020 Sep; 28(19):28713-28726. PubMed ID: 32988136 [TBL] [Abstract][Full Text] [Related]
11. Synthesis of highly focused fields with circular polarization at any transverse plane. Maluenda D; Martínez-Herrero R; Juvells I; Carnicer A Opt Express; 2014 Mar; 22(6):6859-67. PubMed ID: 24664034 [TBL] [Abstract][Full Text] [Related]
12. Inverse method to engineer uniform-intensity focal fields with arbitrary shape. Zhang GL; Gao XZ; Pan Y; Zhao MD; Wang D; Zhang HH; Li Y; Tu C; Wang HT Opt Express; 2018 Jun; 26(13):16782-16796. PubMed ID: 30119499 [TBL] [Abstract][Full Text] [Related]
13. Optimization-free customization of optical tightly focused fields: uniform needles and hotspot chains. He J; Zhuang J; Ding L; Huang K Appl Opt; 2021 Apr; 60(11):3081-3087. PubMed ID: 33983203 [TBL] [Abstract][Full Text] [Related]
14. Engineering of high purity ultra-long optical needle field through reversing the electric dipole array radiation. Wang J; Chen W; Zhan Q Opt Express; 2010 Oct; 18(21):21965-72. PubMed ID: 20941097 [TBL] [Abstract][Full Text] [Related]
15. Fast calculation of tightly focused random electromagnetic beams: controlling the focal field by spatial coherence. Tong R; Dong Z; Chen Y; Wang F; Cai Y; Setälä T Opt Express; 2020 Mar; 28(7):9713-9727. PubMed ID: 32225573 [TBL] [Abstract][Full Text] [Related]
16. Degree of polarization in tightly focused optical fields. Lindfors K; Setälä T; Kaivola M; Friberg AT J Opt Soc Am A Opt Image Sci Vis; 2005 Mar; 22(3):561-8. PubMed ID: 15770995 [TBL] [Abstract][Full Text] [Related]
17. Controllable design of super-oscillatory lenses with multiple sub-diffraction-limit foci. Li M; Li W; Li H; Zhu Y; Yu Y Sci Rep; 2017 May; 7(1):1335. PubMed ID: 28465580 [TBL] [Abstract][Full Text] [Related]
18. Three-dimensional magnetization needle arrays with controllable orientation. Luo J; Zhang H; Wang S; Shi L; Zhu Z; Gu B; Wang X; Li X Opt Lett; 2019 Feb; 44(4):727-730. PubMed ID: 30767972 [TBL] [Abstract][Full Text] [Related]
19. Focal shift in tightly focused hybridly polarized Laguerre-Gaussian vector beams with zero radial index. Chen Y; Huang S; Chen M; Liu X J Opt Soc Am A Opt Image Sci Vis; 2018 Sep; 35(9):1585-1591. PubMed ID: 30183014 [TBL] [Abstract][Full Text] [Related]
20. Tight focusing properties and focal field tailoring of cylindrical vector beams generated from a linearly polarized coherent beam array. Zhang Y; Hou T; Chang H; Yu T; Chang Q; Jiang M; Ma P; Su R; Zhou P Opt Express; 2021 Feb; 29(4):5259-5269. PubMed ID: 33726065 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]