BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 32906980)

  • 1. Spatial distribution of electric-field enhancement across the gap of terahertz bow-tie antennas.
    Runge M; Engel D; Schneider M; Reimann K; Woerner M; Elsaesser T
    Opt Express; 2020 Aug; 28(17):24389-24398. PubMed ID: 32906980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time-resolved imaging of near-fields in THz antennas and direct quantitative measurement of field enhancements.
    Werley CA; Fan K; Strikwerda AC; Teo SM; Zhang X; Averitt RD; Nelson KA
    Opt Express; 2012 Apr; 20(8):8551-67. PubMed ID: 22513564
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface enhancement of THz wave by coupling a subwavelength LiNbO
    Zhang Q; Qi J; Wu Q; Lu Y; Zhao W; Wang R; Pan C; Wang S; Xu J
    Sci Rep; 2017 Dec; 7(1):17602. PubMed ID: 29242537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electric field enhancing properties of the V-shaped optical resonant antennas.
    Zhang J; Yang J; Wu X; Gong Q
    Opt Express; 2007 Dec; 15(25):16852-9. PubMed ID: 19550975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characteristics of Bow-Tie Antenna Structures for Semi-Insulating GaAs and InP Photoconductive Terahertz Emitters.
    Alfihed S; Foulds IG; Holzman JF
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33946393
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Terahertz Nanofocusing with Cantilevered Terahertz-Resonant Antenna Tips.
    Mastel S; Lundeberg MB; Alonso-González P; Gao Y; Watanabe K; Taniguchi T; Hone J; Koppens FHL; Nikitin AY; Hillenbrand R
    Nano Lett; 2017 Nov; 17(11):6526-6533. PubMed ID: 29035061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. THz near-field enhancement by means of isolated dipolar antennas: the effect of finite sample size.
    Savoini M; Grübel S; Bagiante S; Sigg H; Feurer T; Beaud P; Johnson SL
    Opt Express; 2016 Mar; 24(5):4552-4562. PubMed ID: 29092282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Huge field enhancement and high transmittance enabled by terahertz bow-tie aperture arrays: a simulation study.
    Zhu X; Zhang S; Shi H; Zheng M; Wang Y; Xue S; Quan J; Zhang J; Duan H
    Opt Express; 2020 Feb; 28(4):5851-5859. PubMed ID: 32121799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anomalous terahertz transmission in bow-tie plasmonic antenna apertures.
    Yang Y; Singh R; Zhang W
    Opt Lett; 2011 Aug; 36(15):2901-3. PubMed ID: 21808352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Near-field radiation of bow-tie antennas and apertures at optical frequencies.
    Sendur K; Challener W
    J Microsc; 2003 Jun; 210(Pt 3):279-83. PubMed ID: 12787099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of deep-subwavelength dielectric layers at terahertz frequencies using semiconductor plasmonic resonators.
    Berrier A; Albella P; Poyli MA; Ulbricht R; Bonn M; Aizpurua J; Rivas JG
    Opt Express; 2012 Feb; 20(5):5052-60. PubMed ID: 22418310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling of surface waves on a THz antenna detected by a near-field probe.
    Natrella M; Mitrofanov O; Mueckstein R; Graham C; Renaud CC; Seeds AJ
    Opt Express; 2012 Jul; 20(14):16023-31. PubMed ID: 22772292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlling terahertz radiation with nanoscale metal barriers embedded in nano slot antennas.
    Park HR; Bahk YM; Ahn KJ; Park QH; Kim DS; Martín-Moreno L; García-Vidal FJ; Bravo-Abad J
    ACS Nano; 2011 Oct; 5(10):8340-5. PubMed ID: 21961910
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wide Field-of-view and Broadband Terahertz Beam Steering Based on Gap Plasmon Geodesic Antennas.
    Liu K; Guo Y; Pu M; Ma X; Li X; Luo X
    Sci Rep; 2017 Jan; 7():41642. PubMed ID: 28134324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 0.2-4.0 THz broadband terahertz detector based on antenna-coupled AlGaN/GaN HEMTs arrayed in a bow-tie pattern.
    Zhu Y; Ding Q; Xiang L; Zhang J; Li X; Jin L; Shangguan Y; Sun J; Qin H
    Opt Express; 2023 Mar; 31(6):10720-10731. PubMed ID: 37157613
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scattering efficiency and near field enhancement of active semiconductor plasmonic antennas at terahertz frequencies.
    Giannini V; Berrier A; Maier SA; Sánchez-Gil JA; Rivas JG
    Opt Express; 2010 Feb; 18(3):2797-807. PubMed ID: 20174108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Split-Wedge Antennas with Sub-5 nm Gaps for Plasmonic Nanofocusing.
    Chen X; Lindquist NC; Klemme DJ; Nagpal P; Norris DJ; Oh SH
    Nano Lett; 2016 Dec; 16(12):7849-7856. PubMed ID: 27960527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Terahertz near-field microscopy with subwavelength spatial resolution based on photoconductive antennas.
    Bitzer A; Ortner A; Walther M
    Appl Opt; 2010 Jul; 49(19):E1-6. PubMed ID: 20648112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical Gating of Black Phosphorus for Terahertz Detection.
    Mittendorff M; Suess RJ; Leong E; Murphy TE
    Nano Lett; 2017 Sep; 17(9):5811-5816. PubMed ID: 28820599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intense, carrier frequency and bandwidth tunable quasi single-cycle pulses from an organic emitter covering the Terahertz frequency gap.
    Vicario C; Monoszlai B; Jazbinsek M; Lee SH; Kwon OP; Hauri CP
    Sci Rep; 2015 Sep; 5():14394. PubMed ID: 26400005
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.