BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

479 related articles for article (PubMed ID: 32907)

  • 1. Yellow lupin (Lupinus luteus) aminoacyl-tRNA synthetases. Isolation and some properties of enzyme-bound valyl adenylate and seryl adenylate.
    Jakubowski H
    Biochim Biophys Acta; 1978 Dec; 521(2):584-96. PubMed ID: 32907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The plant aminoacyl-tRNA synthetases. 2'-DeoxyATP and ATP in reactions catalysed by yellow lupin aminoacyl-tRNA synthetases.
    Jakubowski H
    Acta Biochim Pol; 1980; 27(3-4):321-33. PubMed ID: 7269975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The plant aminoacyl-tRNA synthetases. Purification and characterization of valyl-tRNA, tryptophanyl-tRNA and seryl-tRNA synthetases from yellow-lupin seeds.
    Jukubowski H; Pawelkiewicz J
    Eur J Biochem; 1975 Mar; 52(2):301-10. PubMed ID: 240681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Valyl-tRNA synthetase form yellow lupin seeds: hydrolysis of the enzyme-bound noncognate aminoacyl adenylate as a possible mechanism of increasing specificity of the aminoacyl-tRNA synthetase.
    Jakubowski H
    Biochemistry; 1980 Oct; 19(22):5071-8. PubMed ID: 6257275
    [No Abstract]   [Full Text] [Related]  

  • 5. Catalytic mechanism of valyl-tRNA synthetase from baker's yeast. Reaction pathway and rate-determining step in the aminoacylation of tRNAVal.
    Kern D; Gangloff J
    Biochemistry; 1981 Apr; 20(8):2065-74. PubMed ID: 7016170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Valyl-tRNA synthetase from yellow lupin seeds. Instability of enzyme-bound noncognate adenylates versus cognate adenylate.
    Jakubowski H
    FEBS Lett; 1978 Nov; 95(2):235-8. PubMed ID: 720616
    [No Abstract]   [Full Text] [Related]  

  • 7. Hydrolytic action of aminoacyl-tRNA synthetases from baker's yeast: "chemical proofreading" preventing acylation of tRNA(I1e) with misactivated valine.
    von der Haar F; Cramer F
    Biochemistry; 1976 Sep; 15(18):4131-8. PubMed ID: 786367
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The plant aminoacyl-tRNA synthetases. Effect of sodium chloride on tRNA aminoacylation and aminoacyl-tRNA decomposition catalysed by aminoacyl-tRNA synthetases from yellow lupin seeds.
    Jakubowski H; Pawelkiewicz J
    Acta Biochim Pol; 1977; 24(2):163-70. PubMed ID: 195427
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The structural basis for seryl-adenylate and Ap4A synthesis by seryl-tRNA synthetase.
    Belrhali H; Yaremchuk A; Tukalo M; Berthet-Colominas C; Rasmussen B; Bösecke P; Diat O; Cusack S
    Structure; 1995 Apr; 3(4):341-52. PubMed ID: 7613865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mechanism of inhibition of valyl-tRNA synthetase by S-adenosylhomocysteine.
    Jakubowski H
    Biochim Biophys Acta; 1982 Dec; 709(2):325-31. PubMed ID: 7150609
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aminoacyl adenylate, a normal intermediate or a dead end in aminoacylation of transfer ribonucleic acid.
    Lagerkvist U; Akesson B; Brändén R
    J Biol Chem; 1977 Feb; 252(3):1002-6. PubMed ID: 320199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzyme hyperspecificity. Rejection of threonine by the valyl-tRNA synthetase by misacylation and hydrolytic editing.
    Fersht AR; Kaethner MM
    Biochemistry; 1976 Jul; 15(15):3342-6. PubMed ID: 182209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence studies on the interaction between yeast seryl-tRNA synthetase and its substrates.
    Maelicke A; Cramer F
    Eur J Biochem; 1975 Mar; 52(1):171-8. PubMed ID: 1100371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Order of binding of substrate to valyl-tRNA synthetase from Bacillus stearothermophilus in amino acid activation reaction.
    Kakitani M; Tonomura B; Hiromi K
    Biochem Int; 1987 Apr; 14(4):597-603. PubMed ID: 3453086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Valyl-tRNA, isoleucyl-tRNA and tyrosyl-tRNA synthetase from baker's yeast. Substrate specificity with regard to ATP analogs and mechanism of the aminoacylation reaction.
    Freist W; von der Haar F; Faulhammer H; Cramer F
    Eur J Biochem; 1976 Jul; 66(3):493-7. PubMed ID: 782885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Seryl-, threonyl-, valyl-, and isoleucyl-tRNA synthetases from baker's yeast: role of the 3'-terminal adenosine in the dynamic recognition of tRNA.
    von der Haar F; Cramer F
    Biochemistry; 1978 Jul; 17(15):3139-45. PubMed ID: 359040
    [No Abstract]   [Full Text] [Related]  

  • 17. Kinetic demonstration of the intermediate role of aminoacyl-adenylate-enzyme in the formation of valyl transfer ribonucleic acid.
    Midelfort CF; Chakraburtty K; Steinschneider A; Mehler AH
    J Biol Chem; 1975 May; 250(10):3866-73. PubMed ID: 165186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Yeast seryl tRNA synthetase: interactions between the ATP binding site and the sites for tRNASer and L-serine.
    Pachmann U; Zachau HG
    Nucleic Acids Res; 1978 Mar; 5(3):975-85. PubMed ID: 417297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influences of amino acid, ATP, pyrophosphate and tRNA on binding of aminoalkyl adenylates to isoleucyl-tRNA synthetase from Escherichia coli MRE 600.
    Flossdorf J; Marutzky R; Kula MR
    Nucleic Acids Res; 1977 Jul; 4(7):2455-66. PubMed ID: 198742
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrolytic action of aminoacyl-tRNA synthetases from baker's yeast. "Chemical proofreading" of Thr-tRNA Val by valyl-tRNA synthetase studied with modified tRNA Val and amino acid analogues.
    Igloi GL; von der Haar F; Cramer F
    Biochemistry; 1977 Apr; 16(8):1696-702. PubMed ID: 322705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.