These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 32907000)

  • 1. Multiple angle digital holography for the shape measurement of the unpainted tympanic membrane.
    Psota P; Tang H; Pooladvand K; Furlong C; Rosowski JJ; Cheng JT; Lédl V
    Opt Express; 2020 Aug; 28(17):24614-24628. PubMed ID: 32907000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Digital holographic measurements of shape and 3D sound-induced displacements of Tympanic Membrane.
    Khaleghi M; Lu W; Dobrev I; Cheng JT; Furlong C; Rosowski JJ
    Opt Eng; 2013 Oct; 52(10):101916. PubMed ID: 24790255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combined high-speed holographic shape and full-field displacement measurements of tympanic membrane.
    Razavi P; Tang H; Rosowski JJ; Furlong C; Cheng JT
    J Biomed Opt; 2018 Sep; 24(3):1-12. PubMed ID: 30255670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional vibrometry of the human eardrum with stroboscopic lensless digital holography.
    Khaleghi M; Furlong C; Ravicz M; Cheng JT; Rosowski JJ
    J Biomed Opt; 2015 May; 20(5):051028. PubMed ID: 25652791
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tympanic membrane contour measurement with two source positions in digital holographic interferometry.
    Solís SM; Hernández-Montes Mdel S; Santoyo FM
    Biomed Opt Express; 2012 Dec; 3(12):3203-10. PubMed ID: 23243570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Speed Holographic Shape and Full-Field Displacement Measurements of the Tympanic Membrane in Normal and Experimentally Simulated Pathological Ears.
    Tang H; Razavi P; Pooladvand K; Psota P; Maftoon N; Rosowski JJ; Furlong C; Cheng JT
    Appl Sci (Basel); 2019 Jul; 9(14):. PubMed ID: 32802482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analyses of the Tympanic Membrane Impulse Response Measured with High-Speed Holography.
    Tang H; Psota P; Rosowski JJ; Furlong C; Cheng JT
    Hear Res; 2021 Oct; 410():108335. PubMed ID: 34450569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D displacement measurements of the tympanic membrane with digital holographic interferometry.
    Solís SM; Santoyo FM; Hernández-Montes Mdel S
    Opt Express; 2012 Feb; 20(5):5613-21. PubMed ID: 22418368
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual-laser measurement and finite element modeling of human tympanic membrane motion under blast exposure.
    Jiang S; Smith K; Gan RZ
    Hear Res; 2019 Jul; 378():43-52. PubMed ID: 30630647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design, fabrication, and in vitro testing of novel three-dimensionally printed tympanic membrane grafts.
    Kozin ED; Black NL; Cheng JT; Cotler MJ; McKenna MJ; Lee DJ; Lewis JA; Rosowski JJ; Remenschneider AK
    Hear Res; 2016 Oct; 340():191-203. PubMed ID: 26994661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurements of three-dimensional shape and sound-induced motion of the chinchilla tympanic membrane.
    Rosowski JJ; Dobrev I; Khaleghi M; Lu W; Cheng JT; Harrington E; Furlong C
    Hear Res; 2013 Jul; 301():44-52. PubMed ID: 23247058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical model characterization of the sound transmission mechanism in the tympanic membrane from a high-speed digital holographic experiment in transient regime.
    Garcia-Manrique J; Furlong C; Gonzalez-Herrera A; Cheng JT
    Acta Biomater; 2023 Mar; 159():63-73. PubMed ID: 36708849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of a lensless digital holographic otoscope system for transient measurements of the human tympanic membrane.
    Dobrev I; Furlong C; Cheng JT; Rosowski JJ
    Exp Mech; 2015 Feb; 55(2):459-470. PubMed ID: 25780271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Full-field transient vibrometry of the human tympanic membrane by local phase correlation and high-speed holography.
    Dobrev I; Furlong C; Cheng JT; Rosowski JJ
    J Biomed Opt; 2014 Sep; 19(9):96001. PubMed ID: 25191832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Response of the human tympanic membrane to transient acoustic and mechanical stimuli: Preliminary results.
    Razavi P; Ravicz ME; Dobrev I; Cheng JT; Furlong C; Rosowski JJ
    Hear Res; 2016 Oct; 340():15-24. PubMed ID: 26880098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Effect of Ear Canal Orientation on Tympanic Membrane Motion and the Sound Field Near the Tympanic Membrane.
    Cheng JT; Ravicz M; Guignard J; Furlong C; Rosowski JJ
    J Assoc Res Otolaryngol; 2015 Aug; 16(4):413-32. PubMed ID: 25910607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of tympanic membrane perforation on middle ear transmission in gerbil.
    Stomackin G; Kidd S; Jung TT; Martin GK; Dong W
    Hear Res; 2019 Mar; 373():48-58. PubMed ID: 30583199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using average correction factors to improve the estimated sound pressure level near the tympanic membrane.
    LaRae Recker K; Zhang T; Lin W
    J Am Acad Audiol; 2012 Oct; 23(9):733-50. PubMed ID: 23072965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recovery from tympanic membrane perforation: Effects on membrane thickness, auditory thresholds, and middle ear transmission.
    Cai L; Stomackin G; Perez NM; Lin X; Jung TT; Dong W
    Hear Res; 2019 Dec; 384():107813. PubMed ID: 31655347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Viscoelastic properties of human tympanic membrane.
    Cheng T; Dai C; Gan RZ
    Ann Biomed Eng; 2007 Feb; 35(2):305-14. PubMed ID: 17160465
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.