These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 32907026)

  • 1. Thermo-optic properties of silicon-rich silicon nitride for on-chip applications.
    Nejadriahi H; Friedman A; Sharma R; Pappert S; Fainman Y; Yu P
    Opt Express; 2020 Aug; 28(17):24951-24960. PubMed ID: 32907026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrahigh extinction ratio and a low power silicon thermo-optic switch.
    Wang J; Shi S; Niu H; Gao S; Yang B; Zhang S; Cheng W; Chen Y; Guo C; Zhu W; Hu G; Cui Y; Yun B
    Opt Lett; 2024 May; 49(10):2705-2708. PubMed ID: 38748141
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient and compact thermo-optic phase shifter in silicon-rich silicon nitride.
    Nejadriahi H; Pappert S; Fainman Y; Yu P
    Opt Lett; 2021 Sep; 46(18):4646-4649. PubMed ID: 34525072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical bistability in PECVD silicon-rich nitride.
    Friedman A; Belogolovskii D; Grieco A; Fainman Y
    Opt Express; 2022 Dec; 30(25):45340-45349. PubMed ID: 36522941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermo-optic coefficient of PECVD silicon-rich silicon nitride.
    Pruiti NG; Klitis C; Gough C; May S; Sorel M
    Opt Lett; 2020 Nov; 45(22):6242-6245. PubMed ID: 33186960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High thermo-optic tunability in PECVD silicon-rich amorphous silicon carbide.
    Chang LS; Pappert S; Yu PKL
    Opt Lett; 2023 Mar; 48(5):1188-1191. PubMed ID: 36857245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-power and high-speed 2 × 2 thermo-optic MMI-MZI switch with suspended phase arms and heater-on-slab structure.
    Duan F; Chen K; Chen D; Yu Y
    Opt Lett; 2021 Jan; 46(2):234-237. PubMed ID: 33448995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-power 2×2 silicon electro-optic switches based on double-ring assisted Mach-Zehnder interferometers.
    Lu L; Zhou L; Li X; Chen J
    Opt Lett; 2014 Mar; 39(6):1633-6. PubMed ID: 24690856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-loss and broadband 2 × 2 silicon thermo-optic Mach-Zehnder switch with bent directional couplers.
    Chen S; Shi Y; He S; Dai D
    Opt Lett; 2016 Feb; 41(4):836-9. PubMed ID: 26872201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compact and low power thermo-optic switch using folded silicon waveguides.
    Densmore A; Janz S; Ma R; Schmid JH; Xu DX; Delâge A; Lapointe J; Vachon M; Cheben P
    Opt Express; 2009 Jun; 17(13):10457-65. PubMed ID: 19550441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compact 1 x N thermo-optic switches based on silicon photonic wire waveguides.
    Chu T; Yamada H; Ishida S; Arakawa Y
    Opt Express; 2005 Dec; 13(25):10109-14. PubMed ID: 19503224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 1 × 2 mode-independent polymeric thermo-optic switch based on a Mach-Zehnder interferometer with a multimode interferometer.
    Sun S; Sun X; Lian T; Che Y; Zhu M; Yu Q; Xie Y; Wang X; Zhang D
    Opt Express; 2023 Apr; 31(8):12049-12058. PubMed ID: 37157372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-dimensional design and analysis of trench-coupler based Silicon Mach-Zehnder thermo-optic switch.
    Liu K; Zhang C; Mu S; Wang S; Sorger VJ
    Opt Express; 2016 Jul; 24(14):15845-53. PubMed ID: 27410854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-crosstalk 2 x 2 thermo-optic switch with silicon wire waveguides.
    Shoji Y; Kintaka K; Suda S; Kawashima H; Hasama T; Ishikawa H
    Opt Express; 2010 Apr; 18(9):9071-5. PubMed ID: 20588754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On-chip broadband silicon thermo-optic 2☓2 four-mode optical switch for optical space and local mode switching.
    Zhou T; Jia H; Ding J; Zhang L; Fu X; Yang L
    Opt Express; 2018 Apr; 26(7):8375-8384. PubMed ID: 29715805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of the nonlinear thermo-optic coefficient of silicon nitride and oxide using an effective index method.
    Johnson K; Alshamrani N; Almutairi D; Grieco A; Horvath C; Westwood-Bachman JN; McKinlay A; Fainman Y
    Opt Express; 2022 Dec; 30(26):46134-46146. PubMed ID: 36558575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Achieving Fano resonance with an ultra-high slope rate by silicon nitride CROW embedded in a Mach-Zehnder interferometer.
    Cheng W; Lin D; Liu P; Yun B; Lu M; Shi S; Hu G; Cui Y
    Opt Express; 2022 Dec; 30(26):46147-46156. PubMed ID: 36558576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Properties of silicon nanoparticles embedded in SiNx deposited by microwave-PECVD.
    Delachat F; Carrada M; Ferblantier G; Grob JJ; Slaoui A
    Nanotechnology; 2009 Oct; 20(41):415608. PubMed ID: 19762938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Demonstration of the DC-Kerr effect in silicon-rich nitride.
    Friedman A; Nejadriahi H; Sharma R; Fainman Y
    Opt Lett; 2021 Sep; 46(17):4236-4239. PubMed ID: 34469983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Submilliwatt thermo-optic switches using free-standing silicon-on-insulator strip waveguides.
    Sun P; Reano RM
    Opt Express; 2010 Apr; 18(8):8406-11. PubMed ID: 20588686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.