These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 32907062)

  • 1. Ultra-low phase noise microwave generation with a free-running monolithic femtosecond laser.
    Kalubovilage M; Endo M; Schibli TR
    Opt Express; 2020 Aug; 28(17):25400-25409. PubMed ID: 32907062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. X-Band photonic microwaves with phase noise below -180 dBc/Hz using a free-running monolithic comb.
    Kalubovilage M; Endo M; Schibli TR
    Opt Express; 2022 Mar; 30(7):11266-11274. PubMed ID: 35473074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-sensitivity optical to microwave comparison with dual-output Mach-Zehnder modulators.
    Endo M; Shoji TD; Schibli TR
    Sci Rep; 2018 Mar; 8(1):4388. PubMed ID: 29531338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compact and ultrastable photonic microwave oscillator.
    Giunta M; Yu J; Lessing M; Fischer M; Lezius M; Xie X; Santarelli G; Le Coq Y; Holzwarth R
    Opt Lett; 2020 Mar; 45(5):1140-1143. PubMed ID: 32108790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual-frequency fundamental-mode NPRO laser for low-noise microwave generation.
    Fan W; Ma C; Liu D; Zhu R; Zhou G; Gong X; Zhou S; Xu J; Yuan W; Guo C; Yeh HC
    Opt Express; 2023 Apr; 31(8):13402-13413. PubMed ID: 37157479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultra-low noise microwave generation with a free-running optical frequency comb transfer oscillator.
    Brochard P; Schilt S; Südmeyer T
    Opt Lett; 2018 Oct; 43(19):4651-4654. PubMed ID: 30272706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultralow phase noise microwave generation with an Er:fiber-based optical frequency divider.
    Quinlan F; Fortier TM; Kirchner MS; Taylor JA; Thorpe MJ; Lemke N; Ludlow AD; Jiang Y; Diddams SA
    Opt Lett; 2011 Aug; 36(16):3260-2. PubMed ID: 21847227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photonic microwave generation with high-power photodiodes.
    Fortier TM; Quinlan F; Hati A; Nelson C; Taylor JA; Fu Y; Campbell J; Diddams SA
    Opt Lett; 2013 May; 38(10):1712-4. PubMed ID: 23938920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compact, thermal-noise-limited reference cavity for ultra-low-noise microwave generation.
    Davila-Rodriguez J; Baynes FN; Ludlow AD; Fortier TM; Leopardi H; Diddams SA; Quinlan F
    Opt Lett; 2017 Apr; 42(7):1277-1280. PubMed ID: 28362748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical amplification and pulse interleaving for low-noise photonic microwave generation.
    Quinlan F; Baynes FN; Fortier TM; Zhou Q; Cross A; Campbell JC; Diddams SA
    Opt Lett; 2014 Mar; 39(6):1581-4. PubMed ID: 24690843
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence of ultra low microwave additive phase noise for an optical RF link based on a class--a semiconductor laser.
    Baili G; Alouini M; Malherbe T; Dolfi D; Huignard JP; Merlet T; Chazelas J; Sagnes I; Bretenaker F
    Opt Express; 2008 Jul; 16(14):10091-7. PubMed ID: 18607416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advanced noise reduction techniques for ultra-low phase noise optical-to-microwave division with femtosecond fiber combs.
    Zhang W; Xu Z; Lours M; Boudot R; Kersalé Y; Luiten AN; Le Coq Y; Santarelli G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 May; 58(5):900-8. PubMed ID: 21622045
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monolithic optical resonator for ultrastable laser and photonic millimeter-wave synthesis.
    Zhang W; Kittlaus E; Savchenkov A; Iltchenko V; Yi L; Papp SB; Matsko A
    Commun Phys; 2024; 7(1):177. PubMed ID: 38845615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultralow-noise photonic microwave synthesis using a soliton microcomb-based transfer oscillator.
    Lucas E; Brochard P; Bouchand R; Schilt S; Südmeyer T; Kippenberg TJ
    Nat Commun; 2020 Jan; 11(1):374. PubMed ID: 31953397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Beat note stabilization in dual-polarization DFB fiber lasers by an optical phase-locked loop.
    Guionie M; Frein L; Carré A; Loas G; Bondu F; Pinsard E; Lablonde L; Cadier B; Alouini M; Romanelli M; Vallet M; Brunel M
    Opt Express; 2018 Feb; 26(3):3483-3488. PubMed ID: 29401875
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photonic chip-based low-noise microwave oscillator.
    Kudelin I; Groman W; Ji QX; Guo J; Kelleher ML; Lee D; Nakamura T; McLemore CA; Shirmohammadi P; Hanifi S; Cheng H; Jin N; Wu L; Halladay S; Luo Y; Dai Z; Jin W; Bai J; Liu Y; Zhang W; Xiang C; Chang L; Iltchenko V; Miller O; Matsko A; Bowers SM; Rakich PT; Campbell JC; Bowers JE; Vahala KJ; Quinlan F; Diddams SA
    Nature; 2024 Mar; 627(8004):534-539. PubMed ID: 38448599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subfemtosecond synchronization of microwave oscillators with mode-locked Er-fiber lasers.
    Jung K; Kim J
    Opt Lett; 2012 Jul; 37(14):2958-60. PubMed ID: 22825191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electro-optic comb based real time ultra-high sensitivity phase noise measurement system for high frequency microwaves.
    Kuse N; Fermann ME
    Sci Rep; 2017 Jun; 7(1):2847. PubMed ID: 28588194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A low-noise photonic heterodyne synthesizer and its application to millimeter-wave radar.
    Kittlaus EA; Eliyahu D; Ganji S; Williams S; Matsko AB; Cooper KB; Forouhar S
    Nat Commun; 2021 Jul; 12(1):4397. PubMed ID: 34285213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultra-low-noise microwave extraction from fiber-based optical frequency comb.
    Millo J; Boudot R; Lours M; Bourgeois PY; Luiten AN; Le Coq Y; Kersalé Y; Santarelli G
    Opt Lett; 2009 Dec; 34(23):3707-9. PubMed ID: 19953169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.