BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 32907071)

  • 1. In vitro evaluation of ultrafast laser drilling large-size holes on sheepshank bone.
    Zhang J; Guan K; Zhang Z; Guan Y
    Opt Express; 2020 Aug; 28(17):25528-25544. PubMed ID: 32907071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrafast laser ablation and machining large-size structures on porcine bone.
    An R; Khadar GW; Wilk EI; Emigh B; Haugen HK; Wohl GR; Dunlop B; Anvari M; Hayward JE; Fang Q
    J Biomed Opt; 2013 Jul; 18(7):70504. PubMed ID: 23884158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of temperature in conventional and ultrasonically-assisted drilling of cortical bone with infrared thermography.
    Alam K; Silberschmidt VV
    Technol Health Care; 2014 Jan; 22(2):243-52. PubMed ID: 24837054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of process parameters for drilled hole quality characteristics during cortical bone drilling using Taguchi method.
    Singh G; Jain V; Gupta D; Ghai A
    J Mech Behav Biomed Mater; 2016 Sep; 62():355-365. PubMed ID: 27254280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rotary ultrasonic bone drilling: Improved pullout strength and reduced damage.
    Gupta V; Pandey PM; Silberschmidt VV
    Med Eng Phys; 2017 Mar; 41():1-8. PubMed ID: 27913176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal damage of osteocytes during pig bone drilling: an in vivo comparative study of currently available and modified drills.
    Kanaya H; Enokida M; Uehara K; Ueki M; Nagashima H
    Arch Orthop Trauma Surg; 2019 Nov; 139(11):1599-1605. PubMed ID: 31289845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cadaveric Study of Bone Tissue Temperature During Pin Site Drilling Using Fluoroptic Thermography.
    Muffly MT; Winegar CD; Miller MC; Altman GT
    J Orthop Trauma; 2018 Aug; 32(8):e315-e319. PubMed ID: 29738397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of spatial distribution of increase in bone temperature during drilling by infrared thermography: preliminary report.
    Augustin G; Davila S; Udiljak T; Vedrina DS; Bagatin D
    Arch Orthop Trauma Surg; 2009 May; 129(5):703-9. PubMed ID: 18421465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Femtosecond plasma mediated laser ablation has advantages over mechanical osteotomy of cranial bone.
    Lo DD; Mackanos MA; Chung MT; Hyun JS; Montoro DT; Grova M; Liu C; Wang J; Palanker D; Connolly AJ; Longaker MT; Contag CH; Wan DC
    Lasers Surg Med; 2012 Dec; 44(10):805-14. PubMed ID: 23184427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of spatial distances between holes and time delays between bone drillings based on examination of heat accumulation and risk of bone thermal necrosis.
    Gholampour S; Deh HHH
    Biomed Eng Online; 2019 May; 18(1):65. PubMed ID: 31126308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of non-Fourier bioheat transfer on bone drilling temperature in orthopedic surgery: Theoretical and in vitro experimental investigation.
    Kabiri A; Talaee MR
    Proc Inst Mech Eng H; 2022 Jun; 236(6):811-824. PubMed ID: 35486132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro comparison of cortical bone temperature generation between traditional sequential drilling and a newly designed step drill in the equine third metacarpal bone.
    Bubeck KA; García-López J; Maranda LS
    Vet Comp Orthop Traumatol; 2009; 22(6):442-7. PubMed ID: 19876527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Small subchondral drill holes improve marrow stimulation of articular cartilage defects.
    Eldracher M; Orth P; Cucchiarini M; Pape D; Madry H
    Am J Sports Med; 2014 Nov; 42(11):2741-50. PubMed ID: 25167994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental investigation of temperature rise in bone drilling with cooling: A comparison between modes of without cooling, internal gas cooling, and external liquid cooling.
    Shakouri E; Haghighi Hassanalideh H; Gholampour S
    Proc Inst Mech Eng H; 2018 Jan; 232(1):45-53. PubMed ID: 29153053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ex-vivo parametric study of laser ablation-based drilling of cortical bone.
    Banerjee S; Pantawane MV; Dahotre NB
    Lasers Med Sci; 2024 Jun; 39(1):157. PubMed ID: 38879698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature Prediction Model for Bone Drilling Based on Density Distribution and In Vivo Experiments for Minimally Invasive Robotic Cochlear Implantation.
    Feldmann A; Anso J; Bell B; Williamson T; Gavaghan K; Gerber N; Rohrbach H; Weber S; Zysset P
    Ann Biomed Eng; 2016 May; 44(5):1576-86. PubMed ID: 26358479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A report on the use of Er:YAG laser for pilot hole drilling prior to miniscrew insertion.
    Ozdemir F; Demir HB; Oztoprak MO; Tozlu M
    Lasers Med Sci; 2015 Feb; 30(2):605-9. PubMed ID: 23793415
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Femtosecond Laser Drilling of Cylindrical Holes for Carbon Fiber-Reinforced Polymer (CFRP) Composites.
    Jiang H; Ma C; Li M; Cao Z
    Molecules; 2021 May; 26(10):. PubMed ID: 34065643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reducing temperature elevation of robotic bone drilling.
    Feldmann A; Wandel J; Zysset P
    Med Eng Phys; 2016 Dec; 38(12):1495-1504. PubMed ID: 27789226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using Laser Range-finding to Measure Bore Depth in Surgical Drilling of Bone.
    Demsey D; Gomez Arrunategui JP; Carr NJ; Guy P; Hodgson AJ
    Clin Orthop Relat Res; 2019 Nov; 477(11):2579-2585. PubMed ID: 31464794
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.