These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 32907162)

  • 1. Controllable biomolecule release from self-assembled organic nanotubes with asymmetric surfaces: pH and temperature dependence.
    Kameta N; Minamikawa H; Masuda M; Mizuno G; Shimizu T
    Soft Matter; 2008 Jul; 4(8):1681-1687. PubMed ID: 32907162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Soft nanotube hydrogels functioning as artificial chaperones.
    Kameta N; Masuda M; Shimizu T
    ACS Nano; 2012 Jun; 6(6):5249-58. PubMed ID: 22616914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Confinement effect of organic nanotubes toward green fluorescent protein (GFP) depending on the inner diameter size.
    Kameta N; Minamikawa H; Someya Y; Yui H; Masuda M; Shimizu T
    Chemistry; 2010 Apr; 16(14):4217-23. PubMed ID: 20235251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular-Level Understanding of the Encapsulation and Dissolution of Poorly Water-Soluble Ibuprofen by Functionalized Organic Nanotubes Using Solid-State NMR Spectroscopy.
    Liu N; Higashi K; Kikuchi J; Ando S; Kameta N; Ding W; Masuda M; Shimizu T; Ueda K; Yamamoto K; Moribe K
    J Phys Chem B; 2016 May; 120(19):4496-507. PubMed ID: 27123961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stimuli-Responsive Transformable Supramolecular Nanotubes.
    Kameta N
    Chem Rec; 2022 Jun; 22(6):e202200025. PubMed ID: 35244334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diffusion Behavior of Differently Charged Molecules in Self-Assembled Organic Nanotubes Studied Using Imaging Fluorescence Correlation Spectroscopy.
    Ghimire G; Espinoza R; Xu H; Nagasaka S; Kameta N; Masuda M; Higgins DA; Ito T
    Langmuir; 2019 Jun; 35(24):7783-7790. PubMed ID: 31125237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glycolipid-based nanostructures with thermal-phase transition behavior functioning as solubilizers and refolding accelerators for protein aggregates.
    Kameta N; Matsuzawa T; Yaoi K; Fukuda J; Masuda M
    Soft Matter; 2017 May; 13(17):3084-3090. PubMed ID: 28361133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Imaging fluorescence correlation spectroscopy studies of dye diffusion in self-assembled organic nanotubes.
    Xu H; Nagasaka S; Kameta N; Masuda M; Ito T; Higgins DA
    Phys Chem Chem Phys; 2016 Jun; 18(25):16766-74. PubMed ID: 27271313
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silica/polymer double-walled hybrid nanotubes: synthesis and application as stimuli-responsive nanocontainers in self-healing coatings.
    Li GL; Zheng Z; Möhwald H; Shchukin DG
    ACS Nano; 2013 Mar; 7(3):2470-8. PubMed ID: 23411573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cyclodextrin-covered organic nanotubes derived from self-assembly of dendrons and their supramolecular transformation.
    Park C; Lee IH; Lee S; Song Y; Rhue M; Kim C
    Proc Natl Acad Sci U S A; 2006 Jan; 103(5):1199-203. PubMed ID: 16423900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface-Engineered Nanocontainers Based on Molecular Self-Assembly and Their Release of Methenamine.
    Zhang M; Wang J; Zhang P; Yan H
    Polymers (Basel); 2018 Feb; 10(2):. PubMed ID: 30966199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vimentin intermediate filaments as a template for silica nanotube preparation.
    Gohara R; Liu D; Nakashima K; Takasaki Y; Ando S
    J Biochem; 2009 Nov; 146(5):627-31. PubMed ID: 19656809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shrinkable Nanotubes for Duplex Formation of Short Nucleotides.
    Kameta N; Akiyama H
    Small; 2018 Aug; 14(34):e1801967. PubMed ID: 30019846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Threading carbon nanotubes through a self-assembled nanotube.
    Ji M; Mason ML; Modarelli DA; Parquette JR
    Chem Sci; 2019 Sep; 10(34):7868-7877. PubMed ID: 31853346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-assembled nanotubes that reversibly bind acetic acid guests.
    Shimizu LS; Hughes AD; Smith MD; Davis MJ; Zhang BP; Zur Loye HC; Shimizu KD
    J Am Chem Soc; 2003 Dec; 125(49):14972-3. PubMed ID: 14653716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photo-responsive hole formation in the monolayer membrane wall of a supramolecular nanotube for quick recovery of encapsulated protein.
    Kameta N; Kikkawa Y; Norikane Y
    Nanoscale Adv; 2022 Apr; 4(8):1979-1987. PubMed ID: 36133410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipid nanotubes and microtubes: experimental evidence for unsymmetrical monolayer membrane formation from unsymmetrical bolaamphiphiles.
    Masuda M; Shimizu T
    Langmuir; 2004 Jul; 20(14):5969-77. PubMed ID: 16459618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Local environment and property of water inside the hollow cylinder of a lipid nanotube.
    Yui H; Guo Y; Koyama K; Sawada T; John G; Yang B; Masuda M; Shimizu T
    Langmuir; 2005 Jan; 21(2):721-7. PubMed ID: 15641846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular structure of glucopyranosylamide lipid and nanotube morphology.
    Kamiya S; Minamikawa H; Jung JH; Yang B; Masuda M; Shimizu T
    Langmuir; 2005 Jan; 21(2):743-50. PubMed ID: 15641849
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coadsorption of Doxorubicin and Selected Dyes on Carbon Nanotubes. Theoretical Investigation of Potential Application as a pH-Controlled Drug Delivery System.
    Panczyk T; Wolski P; Lajtar L
    Langmuir; 2016 May; 32(19):4719-28. PubMed ID: 27133585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.