These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 32907185)

  • 61. Unusual aqueous-phase behavior of cationic amphiphiles with hydrogen-bonding headgroups.
    Rizvi SA; Shi L; Lundberg D; Menger FM
    Langmuir; 2008 Feb; 24(3):673-7. PubMed ID: 18189434
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Bis-p-Sulfonatocalix[4]arene-Based Supramolecular Amphiphiles with an Emergent Lower Critical Solution Temperature Behavior in Aqueous Solution and Hydrogel.
    Yao X; Wang X; Jiang T; Ma X; Tian H
    Langmuir; 2015 Dec; 31(51):13647-54. PubMed ID: 26639514
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Unexpected role of linker position on ammonium gemini surfactant lyotropic gyroid phase stability.
    Sorenson GP; Mahanthappa MK
    Soft Matter; 2016 Feb; 12(8):2408-15. PubMed ID: 26806651
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Structure and stability of nanofluid films wetting solids: An overview.
    Nikolov A; Wu P; Wasan D
    Adv Colloid Interface Sci; 2019 Feb; 264():1-10. PubMed ID: 30553993
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Multiple modulations of supramolecular assemblies from a natural triterpenoid-tailored bipyridinium amphiphile.
    Gao Y; Zhao K; Yu X; Li Z; Wu T; Zhang C; Du F; Hu J
    J Colloid Interface Sci; 2021 Feb; 584():92-102. PubMed ID: 33069032
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Solvent-free, molecular-level modeling of self-assembling amphiphiles in water.
    Dey S; Saha J
    Phys Rev E; 2017 Feb; 95(2-1):023315. PubMed ID: 28297991
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Study of the Gemini Surfactants' Self-Assembly on Graphene Nanosheets: Insights from Molecular Dynamic Simulation.
    Poorsargol M; Sohrabi B; Dehestani M
    J Phys Chem A; 2018 Apr; 122(15):3873-3885. PubMed ID: 29580056
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Effect of Four Commonly Used Dissolution Media Surfactants on Pancreatin Proteolytic Activity.
    Guncheva M; Stippler E
    AAPS PharmSciTech; 2017 May; 18(4):1402-1407. PubMed ID: 27586964
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Supramolecular self-assembly of lipid derivatives on carbon nanotubes.
    Richard C; Balavoine F; Schultz P; Ebbesen TW; Mioskowski C
    Science; 2003 May; 300(5620):775-8. PubMed ID: 12730595
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Peptide-based gemini amphiphiles: phase behavior and rheology of wormlike micelles.
    Shrestha RG; Nomura K; Yamamoto M; Yamawaki Y; Tamura Y; Sakai K; Sakamoto K; Sakai H; Abe M
    Langmuir; 2012 Nov; 28(44):15472-81. PubMed ID: 23075203
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Ionic surfactants as assembly crosslinkers triggered supramolecular membrane with 2D↔3D conversion under multiple stimulus.
    Wang X; Yang C; Song P; Li M; Liu Y; Sun H; Liu Y; Zheng H; Huang J; Zhu H
    J Colloid Interface Sci; 2022 Mar; 609():627-636. PubMed ID: 34844735
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Thickness controllable hypercrosslinked porous polymer nanofilm with high CO
    Shi P; Chen X; Sun Z; Li C; Xu Z; Jiang X; Jiang B
    J Colloid Interface Sci; 2020 Mar; 563():272-280. PubMed ID: 31881492
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Supramolecular assemblies of DNA with neutral nucleoside amphiphiles.
    Barthelemy P; Prata CA; Filocamo SF; Immoos CE; Maynor BW; Hashmi SA; Lee SJ; Grinstaff MW
    Chem Commun (Camb); 2005 Mar; (10):1261-3. PubMed ID: 15742045
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Dual-Controlled Macroscopic Motions in a Supramolecular Hierarchical Assembly of Motor Amphiphiles.
    Leung FK; Kajitani T; Stuart MCA; Fukushima T; Feringa BL
    Angew Chem Int Ed Engl; 2019 Aug; 58(32):10985-10989. PubMed ID: 31166065
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Structure of a Multilayer Nanofilm To Increase the Encapsulation Efficiency of Basic Fibroblast Growth Factor.
    Han U; Hong J
    Mol Pharm; 2018 Mar; 15(3):1277-1283. PubMed ID: 29364691
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Spider-web amphiphiles as artificial lipid clusters: design, synthesis, and accommodation of lipid components at the air-water interface.
    Ariga K; Urakawa T; Michiue A; Kikuchi J
    Langmuir; 2004 Aug; 20(16):6762-9. PubMed ID: 15274583
    [TBL] [Abstract][Full Text] [Related]  

  • 77. High-throughput development of amphiphile self-assembly materials: fast-tracking synthesis, characterization, formulation, application, and understanding.
    Mulet X; Conn CE; Fong C; Kennedy DF; Moghaddam MJ; Drummond CJ
    Acc Chem Res; 2013 Jul; 46(7):1497-505. PubMed ID: 23427836
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Adsorption and desorption behavior of ionic and nonionic surfactants on polymer surfaces.
    Meconi GM; Ballard N; Asua JM; Zangi R
    Soft Matter; 2016 Dec; 12(48):9692-9704. PubMed ID: 27869282
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Tailoring Multicontrolled Supramolecular Assemblies of Stiff-Stilbene Amphiphiles into Macroscopic Soft Scaffolds as Cell-Material Interfaces.
    Cheung LH; To JC; Wong WK; Stuart MCA; Kajitani T; Keng VW; Leung FK
    ACS Appl Mater Interfaces; 2024 Jan; 16(3):4056-4070. PubMed ID: 38198650
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Cross-linked normal hexagonal and bicontinuous cubic assemblies via polymerizable gemini amphiphiles.
    Pindzola BA; Jin J; Gin DL
    J Am Chem Soc; 2003 Mar; 125(10):2940-9. PubMed ID: 12617661
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.