These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 32907198)

  • 1. On the suitability of carbon nanotube forests as non-stick surfaces for nanomanipulation.
    Gjerde K; Kumar RTR; Andersen KNM; Kjelstrup-Hansen J; Teo KBK; Milne WI; Persson C; Mølhave K; Rubahn HG; Bøggild P
    Soft Matter; 2008 Feb; 4(3):392-399. PubMed ID: 32907198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superhydrophobicity on two-tier rough surfaces fabricated by controlled growth of aligned carbon nanotube arrays coated with fluorocarbon.
    Zhu L; Xiu Y; Xu J; Tamirisa PA; Hess DW; Wong CP
    Langmuir; 2005 Nov; 21(24):11208-12. PubMed ID: 16285792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Length control and sharpening of carbon nanotube scanning probe microscope tips using carbon nanotube "nanoknife".
    Wei XL; Jiang AN; Gao S; Chen Q
    J Nanosci Nanotechnol; 2009 Feb; 9(2):1258-62. PubMed ID: 19441501
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon nanotube atomic force microscopy tips: direct growth by chemical vapor deposition and application to high-resolution imaging.
    Cheung CL; Hafner JH; Lieber CM
    Proc Natl Acad Sci U S A; 2000 Apr; 97(8):3809-13. PubMed ID: 10737761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanomanipulation Experiments Exploring Frictional and Mechanical Properties of Carbon Nanotubes.
    Falvo MR; Clary G; Helser A; Paulson S; Taylor RM; Chi V; Brooks FP; Washburn S; Superfine R
    Microsc Microanal; 1998 Sep; 4(5):504-512. PubMed ID: 9990873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microcones and nanograss: toward mechanically robust superhydrophobic surfaces.
    Kondrashov V; Rühe J
    Langmuir; 2014 Apr; 30(15):4342-50. PubMed ID: 24628022
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterizing the surface forces between two individual nanowires using optical microscopy based nanomanipulation.
    Xie H; Mead JL; Wang S; Fatikow S; Huang H
    Nanotechnology; 2018 Jun; 29(22):225705. PubMed ID: 29498626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth kinetics and growth mechanism of ultrahigh mass density carbon nanotube forests on conductive Ti/Cu supports.
    Sugime H; Esconjauregui S; D'Arsié L; Yang J; Makaryan T; Robertson J
    ACS Appl Mater Interfaces; 2014 Sep; 6(17):15440-7. PubMed ID: 25126887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multicomponent and multidimensional carbon nanotube micropatterns by dry contact transfer.
    Yang J; Qu L; Zhao Y; Zhang Q; Dai L; Baur JW; Maruyama B; Vaia RA; Shin E; Murray PT; Luo H; Guo ZX
    J Nanosci Nanotechnol; 2007; 7(4-5):1573-80. PubMed ID: 17450928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of large arrays of high-aspect-ratio single-crystal silicon columns with isolated vertically aligned multi-walled carbon nanotube tips.
    Velásquez-García LF; Akinwande AI
    Nanotechnology; 2008 Oct; 19(40):405305. PubMed ID: 21832615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of morphology on the micro-compression response of carbon nanotube forests.
    Abadi PP; Hutchens SB; Greer JR; Cola BA; Graham S
    Nanoscale; 2012 Jun; 4(11):3373-80. PubMed ID: 22543679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water microdroplets on molecularly tailored surfaces: correlation between wetting hysteresis and evaporation mode switching.
    Soolaman DM; Yu HZ
    J Phys Chem B; 2005 Sep; 109(38):17967-73. PubMed ID: 16853306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct attachment of well-aligned single-walled carbon nanotube architectures to silicon (100) surfaces: a simple approach for device assembly.
    Yu J; Shapter JG; Quinton JS; Johnston MR; Beattie DA
    Phys Chem Chem Phys; 2007 Jan; 9(4):510-20. PubMed ID: 17216067
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Converting an insulating silicon nanochain to a conducting carbon nanotube by electrical breakdown.
    Nogami T; Ohno Y; Ichikawa S; Kohno H
    Nanotechnology; 2009 Aug; 20(33):335602. PubMed ID: 19636096
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon Nanotubes Covalently Attached to Functionalized Surfaces Directly through the Carbon Cage.
    Williams MG; Gao F; BenDhiab I; Teplyakov A
    Langmuir; 2017 Feb; 33(5):1121-1131. PubMed ID: 28166639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and functional imaging with carbon nanotube AFM probes.
    Hafner JH; Cheung CL; Woolley AT; Lieber CM
    Prog Biophys Mol Biol; 2001; 77(1):73-110. PubMed ID: 11473787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimized Vertical Carbon Nanotube Forests for Multiplex Surface-Enhanced Raman Scattering Detection.
    Goldberg-Oppenheimer P; Hutter T; Chen B; Robertson J; Hofmann S; Mahajan S
    J Phys Chem Lett; 2012 Dec; 3(23):3486-92. PubMed ID: 26290977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Slippage of water past superhydrophobic carbon nanotube forests in microchannels.
    Joseph P; Cottin-Bizonne C; Benoît JM; Ybert C; Journet C; Tabeling P; Bocquet L
    Phys Rev Lett; 2006 Oct; 97(15):156104. PubMed ID: 17155344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micro-and nanostructured silicon-based superomniphobic surfaces.
    Nguyen TP; Boukherroub R; Thomy V; Coffinier Y
    J Colloid Interface Sci; 2014 Feb; 416():280-8. PubMed ID: 24370432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Delamination Mechanics of Carbon Nanotube Micropillars.
    Brown J; Hajilounezhad T; Dee NT; Kim S; Hart AJ; Maschmann MR
    ACS Appl Mater Interfaces; 2019 Sep; 11(38):35221-35227. PubMed ID: 31478639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.