BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 32907434)

  • 21. Structure-based design, synthesis and biological evaluation of β-glucuronidase inhibitors.
    Khan KM; Ambreen N; Taha M; Halim SA; Zaheer-ul-Haq ; Naureen S; Rasheed S; Perveen S; Ali S; Choudhary MI
    J Comput Aided Mol Des; 2014 May; 28(5):577-85. PubMed ID: 24771145
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Antitumor activity and structure-activity relationship of heparanase inhibitors: Recent advances.
    Fu K; Bai Z; Chen L; Ye W; Wang M; Hu J; Liu C; Zhou W
    Eur J Med Chem; 2020 May; 193():112221. PubMed ID: 32222663
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of Substituted Naphthotriazolediones as Novel Tryptophan 2,3-Dioxygenase (TDO) Inhibitors through Structure-Based Virtual Screening.
    Wu JS; Lin SY; Liao FY; Hsiao WC; Lee LC; Peng YH; Hsieh CL; Wu MH; Song JS; Yueh A; Chen CH; Yeh SH; Liu CY; Lin SY; Yeh TK; Hsu JT; Shih C; Ueng SH; Hung MS; Wu SY
    J Med Chem; 2015 Oct; 58(19):7807-19. PubMed ID: 26348881
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In silico and pharmacological screenings identify novel serine racemase inhibitors.
    Mori H; Wada R; Li J; Ishimoto T; Mizuguchi M; Obita T; Gouda H; Hirono S; Toyooka N
    Bioorg Med Chem Lett; 2014 Aug; 24(16):3732-5. PubMed ID: 25066953
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 1-[4-(1H-Benzoimidazol-2-yl)-phenyl]-3-[4-(1H-benzoimidazol-2-yl)-phenyl]-urea derivatives as small molecule heparanase inhibitors.
    Pan W; Miao HQ; Xu YJ; Navarro EC; Tonra JR; Corcoran E; Lahiji A; Kussie P; Kiselyov AS; Wong WC; Liu H
    Bioorg Med Chem Lett; 2006 Jan; 16(2):409-12. PubMed ID: 16246560
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 2,5-Disubstituted thiadiazoles as potent β-glucuronidase inhibitors; Synthesis, in vitro and in silico studies.
    Taha M; Barak Almandil N; Rashid U; Ali M; Ibrahim M; Gollapalli M; Mosaddik A; Mohammed Khan K
    Bioorg Chem; 2019 Oct; 91():103126. PubMed ID: 31349116
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identify old drugs as selective bacterial β-GUS inhibitors by structural-based virtual screening and bio-evaluations.
    Chen Z; Xu X; Piao L; Chang S; Liu J; Kong R
    Chem Biol Drug Des; 2020 Mar; 95(3):368-379. PubMed ID: 31834987
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluation of bisindole as potent β-glucuronidase inhibitors: synthesis and in silico based studies.
    Khan KM; Rahim F; Wadood A; Taha M; Khan M; Naureen S; Ambreen N; Hussain S; Perveen S; Choudhary MI
    Bioorg Med Chem Lett; 2014 Apr; 24(7):1825-9. PubMed ID: 24602903
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Investigating Glycol-Split-Heparin-Derived Inhibitors of Heparanase: A Study of Synthetic Trisaccharides.
    Ni M; Elli S; Naggi A; Guerrini M; Torri G; Petitou M
    Molecules; 2016 Nov; 21(11):. PubMed ID: 27886097
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structure-based design of a selective heparanase inhibitor as an antimetastatic agent.
    Ishida K; Hirai G; Murakami K; Teruya T; Simizu S; Sodeoka M; Osada H
    Mol Cancer Ther; 2004 Sep; 3(9):1069-77. PubMed ID: 15367701
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inhibition of heparanase activity and heparanase-induced angiogenesis by suramin analogues.
    Marchetti D; Reiland J; Erwin B; Roy M
    Int J Cancer; 2003 Mar; 104(2):167-74. PubMed ID: 12569571
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enantiospecific synthesis of the heparanase inhibitor (+)-trachyspic acid and stereoisomers from a common precursor.
    Zammit SC; Ferro V; Hammond E; Rizzacasa MA
    Org Biomol Chem; 2007 Sep; 5(17):2826-34. PubMed ID: 17700851
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Control of Heparanase Through the Use of Small Molecules.
    Giannini G; Battistuzzi G; Rivara S
    Adv Exp Med Biol; 2020; 1221():567-603. PubMed ID: 32274727
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Involvement of disulfide bond formation in the activation of heparanase.
    Simizu S; Suzuki T; Muroi M; Lai NS; Takagi S; Dohmae N; Osada H
    Cancer Res; 2007 Aug; 67(16):7841-9. PubMed ID: 17699790
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structure-based virtual screening approach to identify novel classes of PTP1B inhibitors.
    Park H; Bhattarai BR; Ham SW; Cho H
    Eur J Med Chem; 2009 Aug; 44(8):3280-4. PubMed ID: 19269068
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synthesis and biological evaluation of novel thiadiazole amides as potent Cdc25B and PTP1B inhibitors.
    Li Y; Yu Y; Jin K; Gao L; Luo T; Sheng L; Shao X; Li J
    Bioorg Med Chem Lett; 2014 Sep; 24(17):4125-8. PubMed ID: 25124112
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Scoring ligand similarity in structure-based virtual screening.
    Zavodszky MI; Rohatgi A; Van Voorst JR; Yan H; Kuhn LA
    J Mol Recognit; 2009; 22(4):280-92. PubMed ID: 19235177
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fragment-Based Discovery and Optimization of Enzyme Inhibitors by Docking of Commercial Chemical Space.
    Rudling A; Gustafsson R; Almlöf I; Homan E; Scobie M; Warpman Berglund U; Helleday T; Stenmark P; Carlsson J
    J Med Chem; 2017 Oct; 60(19):8160-8169. PubMed ID: 28929756
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Non-Anticoagulant Heparins as Heparanase Inhibitors.
    Cassinelli G; Torri G; Naggi A
    Adv Exp Med Biol; 2020; 1221():493-522. PubMed ID: 32274724
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Discovery of a Potent and Selective Coactivator Associated Arginine Methyltransferase 1 (CARM1) Inhibitor by Virtual Screening.
    Ferreira de Freitas R; Eram MS; Smil D; Szewczyk MM; Kennedy S; Brown PJ; Santhakumar V; Barsyte-Lovejoy D; Arrowsmith CH; Vedadi M; Schapira M
    J Med Chem; 2016 Jul; 59(14):6838-47. PubMed ID: 27390919
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.