These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 32907885)

  • 21. Functional gene categories differentiate maize leaf drought-related microbial epiphytic communities.
    Methe BA; Hiltbrand D; Roach J; Xu W; Gordon SG; Goodner BW; Stapleton AE
    PLoS One; 2020; 15(9):e0237493. PubMed ID: 32946440
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dissecting maize productivity: ideotypes associated with grain yield under drought stress and well-watered conditions.
    Cairns JE; Sanchez C; Vargas M; Ordoñez R; Araus JL
    J Integr Plant Biol; 2012 Dec; 54(12):1007-20. PubMed ID: 22925524
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multiple Integrated Root Phenotypes Are Associated with Improved Drought Tolerance.
    Klein SP; Schneider HM; Perkins AC; Brown KM; Lynch JP
    Plant Physiol; 2020 Jul; 183(3):1011-1025. PubMed ID: 32332090
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Association mapping of drought tolerance and agronomic traits in rice (Oryza sativa L.) landraces.
    Beena R; Kirubakaran S; Nithya N; Manickavelu A; Sah RP; Abida PS; Sreekumar J; Jaslam PM; Rejeth R; Jayalekshmy VG; Roy S; Manju RV; Viji MM; Siddique KHM
    BMC Plant Biol; 2021 Oct; 21(1):484. PubMed ID: 34686134
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effectiveness of vegetation indices and UAV-multispectral imageries in assessing the response of hybrid maize (Zea mays L.) to water deficit stress under field environment.
    Pipatsitee P; Tisarum R; Taota K; Samphumphuang T; Eiumnoh A; Singh HP; Cha-Um S
    Environ Monit Assess; 2022 Nov; 195(1):128. PubMed ID: 36402920
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Key Maize Drought-Responsive Genes and Pathways Revealed by Comparative Transcriptome and Physiological Analyses of Contrasting Inbred Lines.
    Zenda T; Liu S; Wang X; Liu G; Jin H; Dong A; Yang Y; Duan H
    Int J Mol Sci; 2019 Mar; 20(6):. PubMed ID: 30871211
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genome-wide association studies of drought-related metabolic changes in maize using an enlarged SNP panel.
    Zhang X; Warburton ML; Setter T; Liu H; Xue Y; Yang N; Yan J; Xiao Y
    Theor Appl Genet; 2016 Aug; 129(8):1449-63. PubMed ID: 27121008
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Overexpression of ZmPP2C55 positively enhances tolerance to drought stress in transgenic maize plants.
    Zhang P; Yuan Z; Wei L; Qiu X; Wang G; Liu Z; Fu J; Cao L; Wang T
    Plant Sci; 2022 Jan; 314():111127. PubMed ID: 34895535
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stress memory of physiological, biochemical and metabolomic responses in two different rice genotypes under drought stress: The scale matters.
    Auler PA; Souza GM; da Silva Engela MRG; do Amaral MN; Rossatto T; da Silva MGZ; Furlan CM; Maserti B; Braga EJB
    Plant Sci; 2021 Oct; 311():110994. PubMed ID: 34482907
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genetic control of leaf curl in maize.
    Entringer GC; Guedes FL; Oliveira AA; Nascimento JP; Souza JC
    Genet Mol Res; 2014 Mar; 13(1):1672-8. PubMed ID: 24535902
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Variogram analysis of hyperspectral data to characterize the impact of biotic and abiotic stress of maize plants and to estimate biofuel potential.
    Nansen C; Sidumo AJ; Capareda S
    Appl Spectrosc; 2010 Jun; 64(6):627-36. PubMed ID: 20537230
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Numerous genetic loci identified for drought tolerance in the maize nested association mapping populations.
    Li C; Sun B; Li Y; Liu C; Wu X; Zhang D; Shi Y; Song Y; Buckler ES; Zhang Z; Wang T; Li Y
    BMC Genomics; 2016 Nov; 17(1):894. PubMed ID: 27825295
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Carbon isotope composition, water use efficiency, and drought sensitivity are controlled by a common genomic segment in maize.
    Avramova V; Meziane A; Bauer E; Blankenagel S; Eggels S; Gresset S; Grill E; Niculaes C; Ouzunova M; Poppenberger B; Presterl T; Rozhon W; Welcker C; Yang Z; Tardieu F; Schön CC
    Theor Appl Genet; 2019 Jan; 132(1):53-63. PubMed ID: 30244394
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Maize plant architecture trait QTL mapping and candidate gene identification based on multiple environments and double populations.
    Fei J; Lu J; Jiang Q; Liu Z; Yao D; Qu J; Liu S; Guan S; Ma Y
    BMC Plant Biol; 2022 Mar; 22(1):110. PubMed ID: 35277127
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Near-Infrared Reflectance Spectroscopy (NIRS) assessment of δ(18)O and nitrogen and ash contents for improved yield potential and drought adaptation in maize.
    Cabrera-Bosquet L; Sánchez C; Rosales A; Palacios-Rojas N; Araus JL
    J Agric Food Chem; 2011 Jan; 59(2):467-74. PubMed ID: 21175211
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Factors preventing the performance of oxygen isotope ratios as indicators of grain yield in maize.
    Sánchez-Bragado R; Araus JL; Scheerer U; Cairns JE; Rennenberg H; Ferrio JP
    Planta; 2016 Feb; 243(2):355-68. PubMed ID: 26424228
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Yield-trait performance landscapes: from theory to application in breeding maize for drought tolerance.
    Messina CD; Podlich D; Dong Z; Samples M; Cooper M
    J Exp Bot; 2011 Jan; 62(3):855-68. PubMed ID: 21041371
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Using Thermography to Confirm Genotypic Variation for Drought Response in Maize.
    Casari RACN; Paiva DS; Silva VNB; Ferreira TMM; Souza Junior MT; Oliveira NG; Kobayashi AK; Molinari HBC; Santos TT; Gomide RL; Magalhães PC; Sousa CAF
    Int J Mol Sci; 2019 May; 20(9):. PubMed ID: 31071964
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metabolite Profiles of Maize Leaves in Drought, Heat, and Combined Stress Field Trials Reveal the Relationship between Metabolism and Grain Yield.
    Obata T; Witt S; Lisec J; Palacios-Rojas N; Florez-Sarasa I; Yousfi S; Araus JL; Cairns JE; Fernie AR
    Plant Physiol; 2015 Dec; 169(4):2665-83. PubMed ID: 26424159
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The potential of dynamic physiological traits in young tomato plants to predict field-yield performance.
    Gosa SC; Koch A; Shenhar I; Hirschberg J; Zamir D; Moshelion M
    Plant Sci; 2022 Feb; 315():111122. PubMed ID: 35067315
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.