These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
309 related articles for article (PubMed ID: 32907938)
1. Structure of the human clamp loader reveals an autoinhibited conformation of a substrate-bound AAA+ switch. Gaubitz C; Liu X; Magrino J; Stone NP; Landeck J; Hedglin M; Kelch BA Proc Natl Acad Sci U S A; 2020 Sep; 117(38):23571-23580. PubMed ID: 32907938 [TBL] [Abstract][Full Text] [Related]
2. Cryo-EM structures reveal high-resolution mechanism of a DNA polymerase sliding clamp loader. Gaubitz C; Liu X; Pajak J; Stone NP; Hayes JA; Demo G; Kelch BA Elife; 2022 Feb; 11():. PubMed ID: 35179493 [TBL] [Abstract][Full Text] [Related]
3. Cryo-EM reveals a nearly complete PCNA loading process and unique features of the human alternative clamp loader CTF18-RFC. He Q; Wang F; O'Donnell ME; Li H Proc Natl Acad Sci U S A; 2024 Apr; 121(18):e2319727121. PubMed ID: 38669181 [TBL] [Abstract][Full Text] [Related]
4. A central swivel point in the RFC clamp loader controls PCNA opening and loading on DNA. Sakato M; O'Donnell M; Hingorani MM J Mol Biol; 2012 Feb; 416(2):163-75. PubMed ID: 22197374 [TBL] [Abstract][Full Text] [Related]
5. Kinetic analysis of PCNA clamp binding and release in the clamp loading reaction catalyzed by Saccharomyces cerevisiae replication factor C. Marzahn MR; Hayner JN; Meyer JA; Bloom LB Biochim Biophys Acta; 2015 Jan; 1854(1):31-8. PubMed ID: 25450506 [TBL] [Abstract][Full Text] [Related]
6. Mechanism of PCNA loading by Ctf18-RFC for leading-strand DNA synthesis. Yuan Z; Georgescu R; Yao NY; Yurieva O; O'Donnell ME; Li H Science; 2024 Aug; 385(6708):eadk5901. PubMed ID: 39088616 [TBL] [Abstract][Full Text] [Related]
7. Linchpin DNA-binding residues serve as go/no-go controls in the replication factor C-catalyzed clamp-loading mechanism. Liu J; Zhou Y; Hingorani MM J Biol Chem; 2017 Sep; 292(38):15892-15906. PubMed ID: 28808059 [TBL] [Abstract][Full Text] [Related]
8. Structural analysis of a eukaryotic sliding DNA clamp-clamp loader complex. Bowman GD; O'Donnell M; Kuriyan J Nature; 2004 Jun; 429(6993):724-30. PubMed ID: 15201901 [TBL] [Abstract][Full Text] [Related]
9. The replication factor C clamp loader requires arginine finger sensors to drive DNA binding and proliferating cell nuclear antigen loading. Johnson A; Yao NY; Bowman GD; Kuriyan J; O'Donnell M J Biol Chem; 2006 Nov; 281(46):35531-43. PubMed ID: 16980295 [TBL] [Abstract][Full Text] [Related]
10. Recognition of the ring-opened state of proliferating cell nuclear antigen by replication factor C promotes eukaryotic clamp-loading. Tainer JA; McCammon JA; Ivanov I J Am Chem Soc; 2010 Jun; 132(21):7372-8. PubMed ID: 20455582 [TBL] [Abstract][Full Text] [Related]
11. Functions of Multiple Clamp and Clamp-Loader Complexes in Eukaryotic DNA Replication. Ohashi E; Tsurimoto T Adv Exp Med Biol; 2017; 1042():135-162. PubMed ID: 29357057 [TBL] [Abstract][Full Text] [Related]
12. ATP binding and hydrolysis-driven rate-determining events in the RFC-catalyzed PCNA clamp loading reaction. Sakato M; Zhou Y; Hingorani MM J Mol Biol; 2012 Feb; 416(2):176-91. PubMed ID: 22197378 [TBL] [Abstract][Full Text] [Related]
13. Unexpected new insights into DNA clamp loaders: Eukaryotic clamp loaders contain a second DNA site for recessed 5' ends that facilitates repair and signals DNA damage: Eukaryotic clamp loaders contain a second DNA site for recessed 5' ends that facilitates repair and signals DNA damage. Li H; O'Donnell M; Kelch B Bioessays; 2022 Nov; 44(11):e2200154. PubMed ID: 36116108 [TBL] [Abstract][Full Text] [Related]
14. Differences between bacteria and eukaryotes in clamp loader mechanism, a conserved process underlying DNA replication. Landeck JT; Pajak J; Norman EK; Sedivy EL; Kelch BA J Biol Chem; 2024 Apr; 300(4):107166. PubMed ID: 38490435 [TBL] [Abstract][Full Text] [Related]
15. Multistep loading of a DNA sliding clamp onto DNA by replication factor C. Schrecker M; Castaneda JC; Devbhandari S; Kumar C; Remus D; Hite RK Elife; 2022 Aug; 11():. PubMed ID: 35939393 [TBL] [Abstract][Full Text] [Related]
16. Reverse-chaperoning activity of an AAA+ protein. Liu C; McKinney MC; Chen YH; Earnest TM; Shi X; Lin LJ; Ishino Y; Dahmen K; Cann IK; Ha T Biophys J; 2011 Mar; 100(5):1344-52. PubMed ID: 21354408 [TBL] [Abstract][Full Text] [Related]
17. Mechanism of ATP-driven PCNA clamp loading by S. cerevisiae RFC. Chen S; Levin MK; Sakato M; Zhou Y; Hingorani MM J Mol Biol; 2009 May; 388(3):431-42. PubMed ID: 19285992 [TBL] [Abstract][Full Text] [Related]
18. The RFC clamp loader: structure and function. Yao NY; O'Donnell M Subcell Biochem; 2012; 62():259-79. PubMed ID: 22918590 [TBL] [Abstract][Full Text] [Related]
19. Open clamp structure in the clamp-loading complex visualized by electron microscopic image analysis. Miyata T; Suzuki H; Oyama T; Mayanagi K; Ishino Y; Morikawa K Proc Natl Acad Sci U S A; 2005 Sep; 102(39):13795-800. PubMed ID: 16169902 [TBL] [Abstract][Full Text] [Related]
20. Evolutionary clues to eukaryotic DNA clamp-loading mechanisms: analysis of the functional constraints imposed on replication factor C AAA+ ATPases. Neuwald AF Nucleic Acids Res; 2005; 33(11):3614-28. PubMed ID: 16082778 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]