These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 32908138)

  • 1. Chiroptical spectroscopy of a freely diffusing single nanoparticle.
    Sachs J; Günther JP; Mark AG; Fischer P
    Nat Commun; 2020 Sep; 11(1):4513. PubMed ID: 32908138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Circular dichroism from single plasmonic nanostructures with extrinsic chirality.
    Lu X; Wu J; Zhu Q; Zhao J; Wang Q; Zhan L; Ni W
    Nanoscale; 2014 Nov; 6(23):14244-53. PubMed ID: 25307740
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chiral Scatterometry on Chemically Synthesized Single Plasmonic Nanoparticles.
    Karst J; Cho NH; Kim H; Lee HE; Nam KT; Giessen H; Hentschel M
    ACS Nano; 2019 Aug; 13(8):8659-8668. PubMed ID: 31294546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of Chiroptical Signals by Circular Differential Mie Scattering of Nanoparticles.
    Yoo S; Park QH
    Sci Rep; 2015 Sep; 5():14463. PubMed ID: 26403593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photothermal Circular Dichroism Measurements of Single Chiral Gold Nanoparticles Correlated with Electron Tomography.
    Spaeth P; Adhikari S; Heyvaert W; Zhuo X; García I; Liz-Marzán LM; Bals S; Orrit M; Albrecht W
    ACS Photonics; 2022 Dec; 9(12):3995-4004. PubMed ID: 36573165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chiral and Achiral Nanodumbbell Dimers: The Effect of Geometry on Plasmonic Properties.
    Smith KW; Zhao H; Zhang H; Sánchez-Iglesias A; Grzelczak M; Wang Y; Chang WS; Nordlander P; Liz-Marzán LM; Link S
    ACS Nano; 2016 Jun; 10(6):6180-8. PubMed ID: 27172606
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decoding Polarization in a Single Achiral Gold Nanostructure from Emitted Far-Field Radiation.
    Mildner A; Horrer A; Weiss P; Dickreuter S; Simo PC; Gérard D; Kern DP; Fleischer M
    ACS Nano; 2023 Dec; 17(24):25656-25666. PubMed ID: 38071648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chiral Gold Nanorods with Five-Fold Rotational Symmetry and Orientation-Dependent Chiroptical Properties of Their Monomers and Dimers.
    Zhang L; Chen Y; Zheng J; Lewis GR; Xia X; Ringe E; Zhang W; Wang J
    Angew Chem Int Ed Engl; 2023 Dec; 62(52):e202312615. PubMed ID: 37945530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanophotonic Approaches for Chirality Sensing.
    Warning LA; Miandashti AR; McCarthy LA; Zhang Q; Landes CF; Link S
    ACS Nano; 2021 Oct; 15(10):15538-15566. PubMed ID: 34609836
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Observation of Enantiomeric Switching of Individual Plasmonic Metamolecules.
    Zhang Q; Wang X; Wu H; Zhang J; Lin X; Sa J; Li H; Zhou C; Ni W
    Nano Lett; 2023 Jun; 23(11):5180-5186. PubMed ID: 37222445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chiral Plasmonic Nanostructures Enabled by Bottom-Up Approaches.
    Urban MJ; Shen C; Kong XT; Zhu C; Govorov AO; Wang Q; Hentschel M; Liu N
    Annu Rev Phys Chem; 2019 Jun; 70():275-299. PubMed ID: 31112458
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unraveling the origin of chirality from plasmonic nanoparticle-protein complexes.
    Zhang Q; Hernandez T; Smith KW; Hosseini Jebeli SA; Dai AX; Warning L; Baiyasi R; McCarthy LA; Guo H; Chen DH; Dionne JA; Landes CF; Link S
    Science; 2019 Sep; 365(6460):1475-1478. PubMed ID: 31604278
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Induced chirality through electromagnetic coupling between chiral molecular layers and plasmonic nanostructures.
    Abdulrahman NA; Fan Z; Tonooka T; Kelly SM; Gadegaard N; Hendry E; Govorov AO; Kadodwala M
    Nano Lett; 2012 Feb; 12(2):977-83. PubMed ID: 22263754
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogen-Regulated Chiral Nanoplasmonics.
    Duan X; Kamin S; Sterl F; Giessen H; Liu N
    Nano Lett; 2016 Feb; 16(2):1462-6. PubMed ID: 26745446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chirality and chiroptical effects in inorganic nanocrystal systems with plasmon and exciton resonances.
    Ben-Moshe A; Maoz BM; Govorov AO; Markovich G
    Chem Soc Rev; 2013 Aug; 42(16):7028-41. PubMed ID: 23788027
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmonic elliptical nanoholes for chiroptical analysis and enantioselective optical trapping.
    Lin ZH; Zhang J; Huang JS
    Nanoscale; 2021 May; 13(20):9185-9192. PubMed ID: 33960333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-assembly of chiral nanoparticle pyramids with strong R/S optical activity.
    Yan W; Xu L; Xu C; Ma W; Kuang H; Wang L; Kotov NA
    J Am Chem Soc; 2012 Sep; 134(36):15114-21. PubMed ID: 22900978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fano-like chiroptical response in plasmonic heterodimer nanostructures.
    Tian X; Sun S; Leong ESP; Zhu G; Teng J; Zhang B; Fang Y; Ni W; Zhang CY
    Phys Chem Chem Phys; 2020 Feb; 22(6):3604-3610. PubMed ID: 31995069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-Variable Chiroptical Vibrational Sum-Frequency Generation Spectroscopy of Chiral Chemical Solution.
    Lee T; Oh J; Nah S; Choi DS; Rhee H; Cho M
    J Phys Chem Lett; 2021 Oct; 12(41):10218-10224. PubMed ID: 34647735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inversion of the Chiroptical Responses of Chiral Gold Nanoparticles with a Gold Film.
    Chen Y; Zheng J; Zhang L; Li S; Chen Y; Chui KK; Zhang W; Shao L; Wang J
    ACS Nano; 2024 Jan; 18(1):383-394. PubMed ID: 38126881
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.