These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

351 related articles for article (PubMed ID: 32908541)

  • 1. Involvement of Noncoding RNAs in the Differentiation of Osteoclasts.
    Zhao Y; Jia L; Zheng Y; Li W
    Stem Cells Int; 2020; 2020():4813140. PubMed ID: 32908541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fine-tuning osteoclastogenesis: An insight into the cellular and molecular regulation of osteoclastogenesis.
    Anwar A; Sapra L; Gupta N; Ojha RP; Verma B; Srivastava RK
    J Cell Physiol; 2023 Jul; 238(7):1431-1464. PubMed ID: 37183350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Noncoding RNAs in subchondral bone osteoclast function and their therapeutic potential for osteoarthritis.
    Duan L; Liang Y; Xu X; Wang J; Li X; Sun D; Deng Z; Li W; Wang D
    Arthritis Res Ther; 2020 Nov; 22(1):279. PubMed ID: 33239099
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Osteoclast fusion and regulation by RANKL-dependent and independent factors.
    Xing L; Xiu Y; Boyce BF
    World J Orthop; 2012 Dec; 3(12):212-22. PubMed ID: 23362465
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulators of osteoclast differentiation and cell-cell fusion.
    Miyamoto T
    Keio J Med; 2011; 60(4):101-5. PubMed ID: 22200633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peroxidase enzymes inhibit osteoclast differentiation and bone resorption.
    Panagopoulos V; Liapis V; Zinonos I; Hay S; Leach DA; Ingman W; DeNichilo MO; Atkins GJ; Findlay DM; Zannettino ACW; Evdokiou A
    Mol Cell Endocrinol; 2017 Jan; 440():8-15. PubMed ID: 27836774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The osteoclast: a multinucleated, hematopoietic-origin, bone-resorbing osteoimmune cell.
    Bar-Shavit Z
    J Cell Biochem; 2007 Dec; 102(5):1130-9. PubMed ID: 17955494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Bone and Stem Cells. Molecular mechanisms of the differentiation and activation of osteoclasts derived from hematopoietic cells].
    Hayashi M; Nakashima T
    Clin Calcium; 2014 Apr; 24(4):487-500. PubMed ID: 24681494
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of Osteoclastogenesis and Bone Resorption by miRNAs.
    Inoue K; Ng C; Xia Y; Zhao B
    Front Cell Dev Biol; 2021; 9():651161. PubMed ID: 34222229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression and possible role of PVR/CD155/Necl-5 in osteoclastogenesis.
    Kakehi S; Nakahama K; Morita I
    Mol Cell Biochem; 2007 Jul; 301(1-2):209-17. PubMed ID: 17286202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Roles of Mitogen-Activated Protein Kinases in Osteoclast Biology.
    Lee K; Seo I; Choi MH; Jeong D
    Int J Mol Sci; 2018 Oct; 19(10):. PubMed ID: 30275408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hypoxia-inducible factor 1-alpha does not regulate osteoclastogenesis but enhances bone resorption activity via prolyl-4-hydroxylase 2.
    Hulley PA; Bishop T; Vernet A; Schneider JE; Edwards JR; Athanasou NA; Knowles HJ
    J Pathol; 2017 Jul; 242(3):322-333. PubMed ID: 28418093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The signaling adapter protein DAP12 regulates multinucleation during osteoclast development.
    Humphrey MB; Ogasawara K; Yao W; Spusta SC; Daws MR; Lane NE; Lanier LL; Nakamura MC
    J Bone Miner Res; 2004 Feb; 19(2):224-34. PubMed ID: 14969392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aging increases stromal/osteoblastic cell-induced osteoclastogenesis and alters the osteoclast precursor pool in the mouse.
    Cao JJ; Wronski TJ; Iwaniec U; Phleger L; Kurimoto P; Boudignon B; Halloran BP
    J Bone Miner Res; 2005 Sep; 20(9):1659-68. PubMed ID: 16059637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of ionizing irradiation on formation and resorbing activity of osteoclasts in vitro.
    Scheven BA; Burger EH; Kawilarang-de Haas EW; Wassenaar AM; Nijweide PJ
    Lab Invest; 1985 Jul; 53(1):72-9. PubMed ID: 4010232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Abr, a Rho-regulating protein, modulates osteoclastogenesis by enhancing lamellipodia formation by interacting with poly(ADP-ribose) glycohydrolase.
    Farhana F; Sakai E; Koyanagi Y; Yamaguchi Y; Alam MI; Okamoto K; Tsukuba T
    Mol Biol Rep; 2023 Sep; 50(9):7557-7569. PubMed ID: 37507586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased Osteoclastogenesis in Absence of TG2 Is Reversed by Transglutaminase Inhibition-Evidence for the Role for TG1 in Osteoclast Formation.
    Ebrahimi Samani S; Kaartinen MT
    Cells; 2023 Aug; 12(17):. PubMed ID: 37681871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nuclear localization of type I parathyroid hormone/parathyroid hormone-related protein receptors in deer antler osteoclasts: evidence for parathyroid hormone-related protein and receptor activator of NF-kappaB-dependent effects on osteoclast formation in regenerating mammalian bone.
    Faucheux C; Horton MA; Price JS
    J Bone Miner Res; 2002 Mar; 17(3):455-64. PubMed ID: 11874237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel osteoclast precursor cell line, 4B12, recapitulates the features of primary osteoclast differentiation and function: enhanced transfection efficiency before and after differentiation.
    Amano S; Sekine K; Bonewald LF; Ohmori Y
    J Cell Physiol; 2009 Oct; 221(1):40-53. PubMed ID: 19492422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. miR-29 promotes murine osteoclastogenesis by regulating osteoclast commitment and migration.
    Franceschetti T; Kessler CB; Lee SK; Delany AM
    J Biol Chem; 2013 Nov; 288(46):33347-60. PubMed ID: 24085298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.