These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 32908625)

  • 1. Roles of Reactive Oxygen Species in Cardiac Differentiation, Reprogramming, and Regenerative Therapies.
    Liang J; Wu M; Chen C; Mai M; Huang J; Zhu P
    Oxid Med Cell Longev; 2020; 2020():2102841. PubMed ID: 32908625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of reactive oxygen species on cardiomyocyte differentiation of pluripotent stem cells.
    Wei H; Cong X
    Free Radic Res; 2018 Feb; 52(2):150-158. PubMed ID: 29258365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strategies for heart regeneration: approaches ranging from induced pluripotent stem cells to direct cardiac reprogramming.
    Yamakawa H; Ieda M
    Int Heart J; 2015; 56(1):1-5. PubMed ID: 25742939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct cardiac reprogramming: progress and challenges in basic biology and clinical applications.
    Sadahiro T; Yamanaka S; Ieda M
    Circ Res; 2015 Apr; 116(8):1378-91. PubMed ID: 25858064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of Rac-GTPase and reactive oxygen species in cardiac differentiation of stem cells.
    Puceat M
    Antioxid Redox Signal; 2005; 7(11-12):1435-9. PubMed ID: 16356106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Small molecules for reprogramming and transdifferentiation.
    Qin H; Zhao A; Fu X
    Cell Mol Life Sci; 2017 Oct; 74(19):3553-3575. PubMed ID: 28698932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emerging roles of hypoxia-inducible factors and reactive oxygen species in cancer and pluripotent stem cells.
    Saito S; Lin YC; Tsai MH; Lin CS; Murayama Y; Sato R; Yokoyama KK
    Kaohsiung J Med Sci; 2015 Jun; 31(6):279-86. PubMed ID: 26043406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Teaching the basics of reactive oxygen species and their relevance to cancer biology: Mitochondrial reactive oxygen species detection, redox signaling, and targeted therapies.
    Kalyanaraman B; Cheng G; Hardy M; Ouari O; Bennett B; Zielonka J
    Redox Biol; 2018 May; 15():347-362. PubMed ID: 29306792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dedifferentiation, transdifferentiation and cell fusion: in vivo reprogramming strategies for regenerative medicine.
    Pesaresi M; Sebastian-Perez R; Cosma MP
    FEBS J; 2019 Mar; 286(6):1074-1093. PubMed ID: 30103260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pharmacological Reprogramming of Somatic Cells for Regenerative Medicine.
    Xie M; Tang S; Li K; Ding S
    Acc Chem Res; 2017 May; 50(5):1202-1211. PubMed ID: 28453285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Revolution in Reprogramming: Small Molecules.
    Zhou J; Sun J
    Curr Mol Med; 2019; 19(2):77-90. PubMed ID: 30914022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo reprogramming for heart regeneration: A glance at efficiency, environmental impacts, challenges and future directions.
    Ebrahimi B
    J Mol Cell Cardiol; 2017 Jul; 108():61-72. PubMed ID: 28502796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of the mitochondrial reactive oxygen species: Strategies to control mesenchymal stem cell fates ex vivo and in vivo.
    Hu C; Zhao L; Peng C; Li L
    J Cell Mol Med; 2018 Nov; 22(11):5196-5207. PubMed ID: 30160351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomaterial aided differentiation and maturation of induced pluripotent stem cells.
    Velmurugan BK; Bharathi Priya L; Poornima P; Lee LJ; Baskaran R
    J Cell Physiol; 2019 Jun; 234(6):8443-8454. PubMed ID: 30565686
    [TBL] [Abstract][Full Text] [Related]  

  • 15. microRNA and Cardiac Regeneration.
    Gnecchi M; Pisano F; Bariani R
    Adv Exp Med Biol; 2015; 887():119-41. PubMed ID: 26662989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Role of Reactive Oxygen Species (ROS) in the Biological Activities of Metallic Nanoparticles.
    Abdal Dayem A; Hossain MK; Lee SB; Kim K; Saha SK; Yang GM; Choi HY; Cho SG
    Int J Mol Sci; 2017 Jan; 18(1):. PubMed ID: 28075405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The roles of cellular reactive oxygen species, oxidative stress and antioxidants in pregnancy outcomes.
    Al-Gubory KH; Fowler PA; Garrel C
    Int J Biochem Cell Biol; 2010 Oct; 42(10):1634-50. PubMed ID: 20601089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of multiple transcription factors by reactive oxygen species and effects of pro-inflammatory cytokines released during myocardial infarction on cardiac differentiation of embryonic stem cells.
    Law SK; Leung CS; Yau KL; Tse CL; Wong CK; Leung FP; Mascheck L; Huang Y; Sauer H; Tsang SY
    Int J Cardiol; 2013 Oct; 168(4):3458-72. PubMed ID: 23706318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Roles of reactive oxygen species in the fate of stem cells.
    Chaudhari P; Ye Z; Jang YY
    Antioxid Redox Signal; 2014 Apr; 20(12):1881-90. PubMed ID: 23066813
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Turning regenerative technologies into treatment to repair myocardial injuries.
    Carotenuto F; Teodori L; Maccari AM; Delbono L; Orlando G; Di Nardo P
    J Cell Mol Med; 2020 Mar; 24(5):2704-2716. PubMed ID: 31568640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.