These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 32908625)

  • 21. Non-coding RNAs in Cardiac Regeneration.
    van der Ven CFT; Hogewoning BCR; van Mil A; Sluijter JPG
    Adv Exp Med Biol; 2020; 1229():163-180. PubMed ID: 32285411
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Role of Reactive Oxygen Species in In Vitro Cardiac Maturation.
    Momtahan N; Crosby CO; Zoldan J
    Trends Mol Med; 2019 Jun; 25(6):482-493. PubMed ID: 31080142
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Progress and Challenge of Cardiac Regeneration to Treat Heart Failure.
    Isomi M; Sadahiro T; Ieda M
    J Cardiol; 2019 Feb; 73(2):97-101. PubMed ID: 30420106
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular discoveries and treatment strategies by direct reprogramming in cardiac regeneration.
    Werner JH; Rosenberg JH; Um JY; Moulton MJ; Agrawal DK
    Transl Res; 2019 Jan; 203():73-87. PubMed ID: 30142308
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The promise of enhancer-associated long noncoding RNAs in cardiac regeneration.
    Ounzain S; Pedrazzini T
    Trends Cardiovasc Med; 2015 Oct; 25(7):592-602. PubMed ID: 25753179
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Materials Stiffness-Dependent Redox Metabolic Reprogramming of Mesenchymal Stem Cells for Secretome-Based Therapeutic Angiogenesis.
    Yang H; Cheam NMJ; Cao H; Lee MKH; Sze SK; Tan NS; Tay CY
    Adv Healthc Mater; 2019 Oct; 8(20):e1900929. PubMed ID: 31532923
    [TBL] [Abstract][Full Text] [Related]  

  • 27. NADPH Oxidases: Insights into Selected Functions and Mechanisms of Action in Cancer and Stem Cells.
    Skonieczna M; Hejmo T; Poterala-Hejmo A; Cieslar-Pobuda A; Buldak RJ
    Oxid Med Cell Longev; 2017; 2017():9420539. PubMed ID: 28626501
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Redox-dependent BMI1 activity drives in vivo adult cardiac progenitor cell differentiation.
    Herrero D; Tomé M; Cañón S; Cruz FM; Carmona RM; Fuster E; Roche E; Bernad A
    Cell Death Differ; 2018 Mar; 25(4):809-822. PubMed ID: 29323265
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mending a Faltering Heart.
    Li M; Izpisua Belmonte JC
    Circ Res; 2016 Jan; 118(2):344-51. PubMed ID: 26838318
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optimal ROS Signaling Is Critical for Nuclear Reprogramming.
    Zhou G; Meng S; Li Y; Ghebre YT; Cooke JP
    Cell Rep; 2016 May; 15(5):919-925. PubMed ID: 27117405
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Direct cell-fate conversion of somatic cells: Toward regenerative medicine and industries.
    Horisawa K; Suzuki A
    Proc Jpn Acad Ser B Phys Biol Sci; 2020; 96(4):131-158. PubMed ID: 32281550
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Direct somatic cell reprogramming: treatment of cardiac diseases.
    Guo C; Patel K; Qian L
    Curr Gene Ther; 2013 Apr; 13(2):133-8. PubMed ID: 23320478
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Generation of human cardiomyocytes for cardiac regenerative therapies: differentiation and direct reprogramming.
    Hodonsky C; Wu K; Mundada L; Si MS
    Curr Pharm Des; 2014; 20(12):2012-22. PubMed ID: 23844731
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regenerative Medicine/Cardiac Cell Therapy: Pluripotent Stem Cells.
    Duran AG; Reidell O; Stachelscheid H; Klose K; Gossen M; Falk V; Röll W; Stamm C
    Thorac Cardiovasc Surg; 2018 Jan; 66(1):53-62. PubMed ID: 29216651
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Controlling Redox Status for Stem Cell Survival, Expansion, and Differentiation.
    Sart S; Song L; Li Y
    Oxid Med Cell Longev; 2015; 2015():105135. PubMed ID: 26273419
    [TBL] [Abstract][Full Text] [Related]  

  • 36. New concepts in reactive oxygen species and cardiovascular reperfusion physiology.
    Becker LB
    Cardiovasc Res; 2004 Feb; 61(3):461-70. PubMed ID: 14962477
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chemical compound-based direct reprogramming for future clinical applications.
    Takeda Y; Harada Y; Yoshikawa T; Dai P
    Biosci Rep; 2018 Jun; 38(3):. PubMed ID: 29739872
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tissue formation and tissue engineering through host cell recruitment or a potential injectable cell-based biocomposite with replicative potential: Molecular mechanisms controlling cellular senescence and the involvement of controlled transient telomerase activation therapies.
    Babizhayev MA; Yegorov YE
    J Biomed Mater Res A; 2015 Dec; 103(12):3993-4023. PubMed ID: 26034007
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reactive Oxygen Species and Mitochondrial Homeostasis as Regulators of Stem Cell Fate and Function.
    Tan DQ; Suda T
    Antioxid Redox Signal; 2018 Jul; 29(2):149-168. PubMed ID: 28708000
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Intracellular reactive oxygen species mediate the linkage of Na+/K+-ATPase to hypertrophy and its marker genes in cardiac myocytes.
    Xie Z; Kometiani P; Liu J; Li J; Shapiro JI; Askari A
    J Biol Chem; 1999 Jul; 274(27):19323-8. PubMed ID: 10383443
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.