BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 32909023)

  • 1. van der Waals oxide heteroepitaxy for soft transparent electronics.
    Bitla Y; Chu YH
    Nanoscale; 2020 Sep; 12(36):18523-18544. PubMed ID: 32909023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transparent Antiradiative Ferroelectric Heterostructure Based on Flexible Oxide Heteroepitaxy.
    Ma CH; Jiang J; Shao PW; Peng QX; Huang CW; Wu PC; Lee JT; Lai YH; Tsai DP; Wu JM; Lo SC; Wu WW; Zhou YC; Chiu PW; Chu YH
    ACS Appl Mater Interfaces; 2018 Sep; 10(36):30574-30580. PubMed ID: 30118205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxide Heteroepitaxy for Flexible Optoelectronics.
    Bitla Y; Chen C; Lee HC; Do TH; Ma CH; Qui LV; Huang CW; Wu WW; Chang L; Chiu PW; Chu YH
    ACS Appl Mater Interfaces; 2016 Nov; 8(47):32401-32407. PubMed ID: 27933841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flexible ferroelectric element based on van der Waals heteroepitaxy.
    Jiang J; Bitla Y; Huang CW; Do TH; Liu HJ; Hsieh YH; Ma CH; Jang CY; Lai YH; Chiu PW; Wu WW; Chen YC; Zhou YC; Chu YH
    Sci Adv; 2017 Jun; 3(6):e1700121. PubMed ID: 28630922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. van der Waals epitaxial ultrathin two-dimensional nonlayered semiconductor for highly efficient flexible optoelectronic devices.
    Wang Q; Xu K; Wang Z; Wang F; Huang Y; Safdar M; Zhan X; Wang F; Cheng Z; He J
    Nano Lett; 2015 Feb; 15(2):1183-9. PubMed ID: 25603278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrahigh-Detectivity Photodetectors with Van der Waals Epitaxial CdTe Single-Crystalline Films.
    Lian Q; Zhu X; Wang X; Bai W; Yang J; Zhang Y; Qi R; Huang R; Hu W; Tang X; Wang J; Chu J
    Small; 2019 Apr; 15(17):e1900236. PubMed ID: 30932339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flexible Plasmonics Using Aluminum and Copper Epitaxial Films on Mica.
    Quynh LT; Cheng CW; Huang CT; Raja SS; Mishra R; Yu MJ; Lu YJ; Gwo S
    ACS Nano; 2022 Apr; 16(4):5975-5983. PubMed ID: 35333048
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Fabrication and Measurement Method for a Flexible Ferroelectric Element Based on Van Der Waals Heteroepitaxy.
    Jiang J; Bitla Y; Peng QX; Zhou YC; Chu YH
    J Vis Exp; 2018 Apr; (134):. PubMed ID: 29683441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Van der Waals Epitaxy of III-Nitride Semiconductors Based on 2D Materials for Flexible Applications.
    Yu J; Wang L; Hao Z; Luo Y; Sun C; Wang J; Han Y; Xiong B; Li H
    Adv Mater; 2020 Apr; 32(15):e1903407. PubMed ID: 31486182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flexible Metal-Insulator Transitions Based on van der Waals Oxide Heterostructures.
    Zhang Y; Cao Y; Hu H; Wang X; Li P; Yang Y; Zheng J; Zhang C; Song Z; Li A; Wen Z
    ACS Appl Mater Interfaces; 2019 Feb; 11(8):8284-8290. PubMed ID: 30707841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 2D Bi
    Wang S; Li Y; Ng A; Hu Q; Zhou Q; Li X; Liu H
    Nanomaterials (Basel); 2020 Aug; 10(9):. PubMed ID: 32842700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Van der Waals Epitaxial Growth of Ultrathin Indium Antimonide on Arbitrary Substrates through Low-Thermal Budget.
    Xiong Z; Wen Y; Wang H; Zhang X; Yin L; Cheng R; Tu Y; He J
    Adv Mater; 2024 May; ():e2402435. PubMed ID: 38723286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis, properties and applications of 2D non-graphene materials.
    Wang F; Wang Z; Wang Q; Wang F; Yin L; Xu K; Huang Y; He J
    Nanotechnology; 2015 Jul; 26(29):292001. PubMed ID: 26134271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. van der Waals Contact Engineering of Graphene Field-Effect Transistors for Large-Area Flexible Electronics.
    Liu F; Navaraj WT; Yogeswaran N; Gregory DH; Dahiya R
    ACS Nano; 2019 Mar; 13(3):3257-3268. PubMed ID: 30835440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Flexible Magnetic Field Sensor Based on PZT/CFO Bilayer via van der Waals Oxide Heteroepitaxy.
    Pan W; Ao Y; Zhou P; Fetisov L; Fetisov Y; Zhang T; Qi Y
    Sensors (Basel); 2023 Nov; 23(22):. PubMed ID: 38005533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Remote epitaxy through graphene enables two-dimensional material-based layer transfer.
    Kim Y; Cruz SS; Lee K; Alawode BO; Choi C; Song Y; Johnson JM; Heidelberger C; Kong W; Choi S; Qiao K; Almansouri I; Fitzgerald EA; Kong J; Kolpak AM; Hwang J; Kim J
    Nature; 2017 Apr; 544(7650):340-343. PubMed ID: 28426001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct growth of graphene on rigid and flexible substrates: progress, applications, and challenges.
    Pham VP; Jang HS; Whang D; Choi JY
    Chem Soc Rev; 2017 Oct; 46(20):6276-6300. PubMed ID: 28857098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photocurrent generation with two-dimensional van der Waals semiconductors.
    Buscema M; Island JO; Groenendijk DJ; Blanter SI; Steele GA; van der Zant HS; Castellanos-Gomez A
    Chem Soc Rev; 2015 Jun; 44(11):3691-718. PubMed ID: 25909688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spalling-Induced Liftoff and Transfer of Electronic Films Using a van der Waals Release Layer.
    Blanton EW; Motala MJ; Prusnick TA; Hilton A; Brown JL; Bhattacharyya A; Krishnamoorthy S; Leedy K; Glavin NR; Snure M
    Small; 2021 Oct; 17(42):e2102668. PubMed ID: 34541817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of hexagonal boron nitride heterostructures for 2D van der Waals electronics.
    Kim KK; Lee HS; Lee YH
    Chem Soc Rev; 2018 Aug; 47(16):6342-6369. PubMed ID: 30043784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.