These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 32909733)
1. Aggregated Amphiphilic Antimicrobial Peptides Embedded in Bacterial Membranes. Gong H; Liao M; Hu X; Fa K; Phanphak S; Ciumac D; Hollowell P; Shen K; Clifton LA; Campana M; Webster JRP; Fragneto G; Waigh TA; McBain AJ; Lu JR ACS Appl Mater Interfaces; 2020 Oct; 12(40):44420-44432. PubMed ID: 32909733 [TBL] [Abstract][Full Text] [Related]
2. Unlocking roles of cationic and aromatic residues in peptide amphiphiles in treating drug-resistant gram-positive pathogens. Liao M; Gong H; Shen K; Wang Z; Li R; Campana M; Hu X; Lu JR J Colloid Interface Sci; 2024 Oct; 672():209-223. PubMed ID: 38838629 [TBL] [Abstract][Full Text] [Related]
3. Intramembrane Nanoaggregates of Antimicrobial Peptides Play a Vital Role in Bacterial Killing. Liao M; Gong H; Quan X; Wang Z; Hu X; Chen Z; Li Z; Liu H; Zhang L; McBain AJ; Waigh TA; Zhou J; Lu JR Small; 2023 Jan; 19(3):e2204428. PubMed ID: 36417574 [TBL] [Abstract][Full Text] [Related]
4. How do Self-Assembling Antimicrobial Lipopeptides Kill Bacteria? Gong H; Sani MA; Hu X; Fa K; Hart JW; Liao M; Hollowell P; Carter J; Clifton LA; Campana M; Li P; King SM; Webster JRP; Maestro A; Zhu S; Separovic F; Waigh TA; Xu H; McBain AJ; Lu JR ACS Appl Mater Interfaces; 2020 Dec; 12(50):55675-55687. PubMed ID: 33259204 [TBL] [Abstract][Full Text] [Related]
5. Hydrophobic Control of the Bioactivity and Cytotoxicity of de Novo-Designed Antimicrobial Peptides. Gong H; Zhang J; Hu X; Li Z; Fa K; Liu H; Waigh TA; McBain A; Lu JR ACS Appl Mater Interfaces; 2019 Sep; 11(38):34609-34620. PubMed ID: 31448889 [TBL] [Abstract][Full Text] [Related]
6. Modulation of Antimicrobial Peptide Conformation and Aggregation by Terminal Lipidation and Surfactants. Liu K; Yang L; Peng X; Wang J; Lu JR; Xu H Langmuir; 2020 Feb; 36(7):1737-1744. PubMed ID: 32009405 [TBL] [Abstract][Full Text] [Related]
8. Structural Disruptions of the Outer Membranes of Gram-Negative Bacteria by Rationally Designed Amphiphilic Antimicrobial Peptides. Gong H; Hu X; Liao M; Fa K; Ciumac D; Clifton LA; Sani MA; King SM; Maestro A; Separovic F; Waigh TA; Xu H; McBain AJ; Lu JR ACS Appl Mater Interfaces; 2021 Apr; 13(14):16062-16074. PubMed ID: 33797891 [TBL] [Abstract][Full Text] [Related]
9. Combination of a pH-responsive peptide amphiphile and a conventional antibiotic in treating Gram-negative bacteria. Liao M; Gong H; Liu H; Shen K; Ge T; King S; Schweins R; McBain AJ; Hu X; Lu JR J Colloid Interface Sci; 2024 Apr; 659():397-412. PubMed ID: 38183806 [TBL] [Abstract][Full Text] [Related]
10. How do terminal modifications of short designed IIKK peptide amphiphiles affect their antifungal activity and biocompatibility? Zhang J; Gong H; Liao M; Li Z; Schweins R; Penny J; Lu JR J Colloid Interface Sci; 2022 Feb; 608(Pt 1):193-206. PubMed ID: 34626966 [TBL] [Abstract][Full Text] [Related]
11. High Selective Performance of Designed Antibacterial and Anticancer Peptide Amphiphiles. Chen C; Chen Y; Yang C; Zeng P; Xu H; Pan F; Lu JR ACS Appl Mater Interfaces; 2015 Aug; 7(31):17346-55. PubMed ID: 26204061 [TBL] [Abstract][Full Text] [Related]
12. In silico design of polycationic antimicrobial peptides active against Pseudomonas aeruginosa and Staphylococcus aureus. Hincapié O; Giraldo P; Orduz S Antonie Van Leeuwenhoek; 2018 Oct; 111(10):1871-1882. PubMed ID: 29626331 [TBL] [Abstract][Full Text] [Related]
13. Rationally designed antimicrobial peptides: Insight into the mechanism of eleven residue peptides against microbial infections. Pandit G; Biswas K; Ghosh S; Debnath S; Bidkar AP; Satpati P; Bhunia A; Chatterjee S Biochim Biophys Acta Biomembr; 2020 Apr; 1862(4):183177. PubMed ID: 31954105 [TBL] [Abstract][Full Text] [Related]
14. Amphiphilic cationic β(3R3)-peptides: membrane active peptidomimetics and their potential as antimicrobial agents. Mosca S; Keller J; Azzouz N; Wagner S; Titz A; Seeberger PH; Brezesinski G; Hartmann L Biomacromolecules; 2014 May; 15(5):1687-95. PubMed ID: 24694059 [TBL] [Abstract][Full Text] [Related]
15. Modifications on amphiphilicity and cationicity of unnatural amino acid containing peptides for the improvement of antimicrobial activity against pathogenic bacteria. Taira J; Kida Y; Yamaguchi H; Kuwano K; Higashimoto Y; Kodama H J Pept Sci; 2010 Nov; 16(11):607-12. PubMed ID: 20648478 [TBL] [Abstract][Full Text] [Related]
16. Damage of the bacterial cell envelope by antimicrobial peptides gramicidin S and PGLa as revealed by transmission and scanning electron microscopy. Hartmann M; Berditsch M; Hawecker J; Ardakani MF; Gerthsen D; Ulrich AS Antimicrob Agents Chemother; 2010 Aug; 54(8):3132-42. PubMed ID: 20530225 [TBL] [Abstract][Full Text] [Related]
17. Lipid selectivity in novel antimicrobial peptides: Implication on antimicrobial and hemolytic activity. Maturana P; Martinez M; Noguera ME; Santos NC; Disalvo EA; Semorile L; Maffia PC; Hollmann A Colloids Surf B Biointerfaces; 2017 May; 153():152-159. PubMed ID: 28236791 [TBL] [Abstract][Full Text] [Related]
19. Cationic spacer arm design strategy for control of antimicrobial activity and conformation of amphiphilic methacrylate random copolymers. Palermo EF; Vemparala S; Kuroda K Biomacromolecules; 2012 May; 13(5):1632-41. PubMed ID: 22475325 [TBL] [Abstract][Full Text] [Related]