These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 32909744)

  • 1. Review on Metal-Based Nanoparticles: Role of Reactive Oxygen Species in Renal Toxicity.
    Makhdoumi P; Karimi H; Khazaei M
    Chem Res Toxicol; 2020 Oct; 33(10):2503-2514. PubMed ID: 32909744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of nanoparticle-induced oxidative stress and toxicity.
    Manke A; Wang L; Rojanasakul Y
    Biomed Res Int; 2013; 2013():942916. PubMed ID: 24027766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants.
    Shahid M; Pourrut B; Dumat C; Nadeem M; Aslam M; Pinelli E
    Rev Environ Contam Toxicol; 2014; 232():1-44. PubMed ID: 24984833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-organ Toxicity Attenuation by Cerium Oxide and Yttrium Oxide Nanoparticles: Comparing the Beneficial Effects on Tissues Oxidative Damage Induced by Sub-acute Exposure to Diazinon.
    Navaei-Nigjeh M; Daniali M; Rahimifard M; Khaksar MR
    Pharm Nanotechnol; 2020; 8(3):225-238. PubMed ID: 32767961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Role of Reactive Oxygen Species (ROS) in the Biological Activities of Metallic Nanoparticles.
    Abdal Dayem A; Hossain MK; Lee SB; Kim K; Saha SK; Yang GM; Choi HY; Cho SG
    Int J Mol Sci; 2017 Jan; 18(1):. PubMed ID: 28075405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellular interactions of zinc oxide nanoparticles with human embryonic kidney (HEK 293) cells.
    V G R; P V M
    Colloids Surf B Biointerfaces; 2017 Sep; 157():182-190. PubMed ID: 28586731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidative stress following exposure to silver and gold nanoparticles in mice.
    Shrivastava R; Kushwaha P; Bhutia YC; Flora S
    Toxicol Ind Health; 2016 Aug; 32(8):1391-1404. PubMed ID: 25548373
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles.
    Li Y; Zhang W; Niu J; Chen Y
    ACS Nano; 2012 Jun; 6(6):5164-73. PubMed ID: 22587225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Zinc oxide nanoparticles induced oxidative stress in mouse bone marrow mesenchymal stem cells.
    Syama S; Sreekanth PJ; Varma HK; Mohanan PV
    Toxicol Mech Methods; 2014 Dec; 24(9):644-53. PubMed ID: 25138636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exposure to sublethal concentrations of Co
    Heinlaan M; Muna M; Juganson K; Oriekhova O; Stoll S; Kahru A; Slaveykova VI
    Aquat Toxicol; 2017 Aug; 189():123-133. PubMed ID: 28623688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cytotoxicity of CeO
    Sendra M; Volland M; Balbi T; Fabbri R; Yeste MP; Gatica JM; Canesi L; Blasco J
    Aquat Toxicol; 2018 Jul; 200():13-20. PubMed ID: 29704629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dose-dependent genotoxicity of copper oxide nanoparticles stimulated by reactive oxygen species in human lung epithelial cells.
    Akhtar MJ; Kumar S; Alhadlaq HA; Alrokayan SA; Abu-Salah KM; Ahamed M
    Toxicol Ind Health; 2016 May; 32(5):809-21. PubMed ID: 24311626
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative Mapping of Oxidative Stress Response to Lithium Cobalt Oxide Nanoparticles in Single Cells Using Multiplexed in Situ Gene Expression Analysis.
    Cui Y; Melby ES; Mensch AC; Laudadio ED; Hang MN; Dohnalkova A; Hu D; Hamers RJ; Orr G
    Nano Lett; 2019 Mar; 19(3):1990-1997. PubMed ID: 30773885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toxicity and mechanisms of action of titanium dioxide nanoparticles in living organisms.
    Hou J; Wang L; Wang C; Zhang S; Liu H; Li S; Wang X
    J Environ Sci (China); 2019 Jan; 75():40-53. PubMed ID: 30473306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined Toxicity of Metal Nanoparticles: Comparison of Individual and Mixture Particles Effect.
    Engin AB
    Adv Exp Med Biol; 2021; 1275():165-193. PubMed ID: 33539016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of the effects of MnO
    Ashrafi Hafez A; Naserzadeh P; Mortazavian AM; Mehravi B; Ashtari K; Seydi E; Salimi A
    Toxicol Mech Methods; 2019 Feb; 29(2):86-94. PubMed ID: 30132356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transient DNA damage following exposure to gold nanoparticles.
    May S; Hirsch C; Rippl A; Bohmer N; Kaiser JP; Diener L; Wichser A; Bürkle A; Wick P
    Nanoscale; 2018 Aug; 10(33):15723-15735. PubMed ID: 30094453
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidative stress and potential effects of metal nanoparticles: A review of biocompatibility and toxicity concerns.
    Wang YL; Lee YH; Chou CL; Chang YS; Liu WC; Chiu HW
    Environ Pollut; 2024 Apr; 346():123617. PubMed ID: 38395133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanotoxicity: oxidative stress mediated toxicity of metal and metal oxide nanoparticles.
    Sarkar A; Ghosh M; Sil PC
    J Nanosci Nanotechnol; 2014 Jan; 14(1):730-43. PubMed ID: 24730293
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Redox interactions and genotoxicity of metal-based nanoparticles: A comprehensive review.
    Mortezaee K; Najafi M; Samadian H; Barabadi H; Azarnezhad A; Ahmadi A
    Chem Biol Interact; 2019 Oct; 312():108814. PubMed ID: 31509734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.