BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 32909763)

  • 41. Velocity fields in a collectively migrating epithelium.
    Petitjean L; Reffay M; Grasland-Mongrain E; Poujade M; Ladoux B; Buguin A; Silberzan P
    Biophys J; 2010 May; 98(9):1790-800. PubMed ID: 20441742
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Celebrating Soft Matter's 10th Anniversary: Cell division: a source of active stress in cellular monolayers.
    Doostmohammadi A; Thampi SP; Saw TB; Lim CT; Ladoux B; Yeomans JM
    Soft Matter; 2015 Oct; 11(37):7328-36. PubMed ID: 26265162
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Spatiotemporal force and motion in collective cell migration.
    Saraswathibhatla A; Galles EE; Notbohm J
    Sci Data; 2020 Jun; 7(1):197. PubMed ID: 32581285
    [TBL] [Abstract][Full Text] [Related]  

  • 44. New wrinkling substrate assay reveals traction force fields of leader and follower cells undergoing collective migration.
    Yokoyama S; Matsui TS; Deguchi S
    Biochem Biophys Res Commun; 2017 Jan; 482(4):975-979. PubMed ID: 27899318
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Identification of hyaluronan as a crystal-binding molecule at the surface of migrating and proliferating MDCK cells.
    Verkoelen CF; Van Der Boom BG; Romijn JC
    Kidney Int; 2000 Sep; 58(3):1045-54. PubMed ID: 10972669
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Physics of active jamming during collective cellular motion in a monolayer.
    Garcia S; Hannezo E; Elgeti J; Joanny JF; Silberzan P; Gov NS
    Proc Natl Acad Sci U S A; 2015 Dec; 112(50):15314-9. PubMed ID: 26627719
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Force mapping in epithelial cell migration.
    du Roure O; Saez A; Buguin A; Austin RH; Chavrier P; Silberzan P; Ladoux B
    Proc Natl Acad Sci U S A; 2005 Feb; 102(7):2390-5. PubMed ID: 15695588
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dynamic Migration Modes of Collective Cells.
    Lin SZ; Ye S; Xu GK; Li B; Feng XQ
    Biophys J; 2018 Nov; 115(9):1826-1835. PubMed ID: 30297134
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cellular Contraction and Polarization Drive Collective Cellular Motion.
    Notbohm J; Banerjee S; Utuje KJC; Gweon B; Jang H; Park Y; Shin J; Butler JP; Fredberg JJ; Marchetti MC
    Biophys J; 2016 Jun; 110(12):2729-2738. PubMed ID: 27332131
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Transport pathways of solid lipid nanoparticles across Madin-Darby canine kidney epithelial cell monolayer.
    Chai GH; Hu FQ; Sun J; Du YZ; You J; Yuan H
    Mol Pharm; 2014 Oct; 11(10):3716-26. PubMed ID: 25197948
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cell cycle-dependent active stress drives epithelia remodeling.
    Devany J; Sussman DM; Yamamoto T; Manning ML; Gardel ML
    Proc Natl Acad Sci U S A; 2021 Mar; 118(10):. PubMed ID: 33649197
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Photoactivatable Hydrogel Interfaces for Resolving the Interplay of Chemical, Mechanical, and Geometrical Regulation of Collective Cell Migration.
    Yamamoto S; Okada K; Sasaki N; Chang AC; Yamaguchi K; Nakanishi J
    Langmuir; 2019 Jun; 35(23):7459-7468. PubMed ID: 30379076
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Border forces and friction control epithelial closure dynamics.
    Cochet-Escartin O; Ranft J; Silberzan P; Marcq P
    Biophys J; 2014 Jan; 106(1):65-73. PubMed ID: 24411238
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Engineering slit-like channels for studying the growth of epithelial tissues in 3D-confined spaces.
    Alaimo L; Luciano M; Mohammed D; Versaevel M; Bruyère C; Vercruysse E; Gabriele S
    Biotechnol Bioeng; 2020 Sep; 117(9):2887-2896. PubMed ID: 32484903
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Precise Tuning and Characterization of Viscoelastic Interfaces for the Study of Early Epithelial-Mesenchymal Transition Behaviors.
    Chang AC; Uto K; Abdellatef SA; Nakanishi J
    Langmuir; 2022 May; 38(17):5307-5314. PubMed ID: 35143208
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mechanism underlying dynamic scaling properties observed in the contour of spreading epithelial monolayer.
    Oguma T; Takigawa-Imamura H; Miura T
    Phys Rev E; 2020 Dec; 102(6-1):062408. PubMed ID: 33466041
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Constitutively active mitogen-activated protein kinase kinase MEK1 disrupts morphogenesis and induces an invasive phenotype in Madin-Darby canine kidney epithelial cells.
    Montesano R; Soriano JV; Hosseini G; Pepper MS; Schramek H
    Cell Growth Differ; 1999 May; 10(5):317-32. PubMed ID: 10359013
    [TBL] [Abstract][Full Text] [Related]  

  • 58. α-Catenin Controls the Anisotropy of Force Distribution at Cell-Cell Junctions during Collective Cell Migration.
    Matsuzawa K; Himoto T; Mochizuki Y; Ikenouchi J
    Cell Rep; 2018 Jun; 23(12):3447-3456. PubMed ID: 29924989
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Synthesis and viscoelastic characterization of microstructurally aligned Silk fibroin sponges.
    Panda D; Konar S; Bajpai SK; Arockiarajan A
    J Mech Behav Biomed Mater; 2017 Jul; 71():362-371. PubMed ID: 28407572
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Hepatocyte growth factor and Madin-Darby canine kidney cells: in vitro models of epithelial cell movement and morphogenesis.
    Balkovetz DF
    Microsc Res Tech; 1998 Dec; 43(5):456-63. PubMed ID: 9858342
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.