These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 32909802)

  • 1. Experimental Characterization of Unsharp Qubit Observables and Sequential Measurement Incompatibility via Quantum Random Access Codes.
    Anwer H; Muhammad S; Cherifi W; Miklin N; Tavakoli A; Bourennane M
    Phys Rev Lett; 2020 Aug; 125(8):080403. PubMed ID: 32909802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Testing Heisenberg-Type Measurement Uncertainty Relations of Three Observables.
    Mao YL; Chen H; Niu C; Li ZD; Yu S; Fan J
    Phys Rev Lett; 2023 Oct; 131(15):150203. PubMed ID: 37897772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Repeated multi-qubit readout and feedback with a mixed-species trapped-ion register.
    Negnevitsky V; Marinelli M; Mehta KK; Lo HY; Flühmann C; Home JP
    Nature; 2018 Nov; 563(7732):527-531. PubMed ID: 30397345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental Measurement-Device-Independent Quantum Steering and Randomness Generation Beyond Qubits.
    Guo Y; Cheng S; Hu X; Liu BH; Huang EM; Huang YF; Li CF; Guo GC; Cavalcanti EG
    Phys Rev Lett; 2019 Oct; 123(17):170402. PubMed ID: 31702255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Projective Measurements Are Sufficient for Recycling Nonlocality.
    Steffinlongo A; Tavakoli A
    Phys Rev Lett; 2022 Dec; 129(23):230402. PubMed ID: 36563233
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extending the lifetime of a quantum bit with error correction in superconducting circuits.
    Ofek N; Petrenko A; Heeres R; Reinhold P; Leghtas Z; Vlastakis B; Liu Y; Frunzio L; Girvin SM; Jiang L; Mirrahimi M; Devoret MH; Schoelkopf RJ
    Nature; 2016 Aug; 536(7617):441-5. PubMed ID: 27437573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction and real-time compensation of qubit decoherence via machine learning.
    Mavadia S; Frey V; Sastrawan J; Dona S; Biercuk MJ
    Nat Commun; 2017 Jan; 8():14106. PubMed ID: 28090085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Realization of quantum error correction.
    Chiaverini J; Leibfried D; Schaetz T; Barrett MD; Blakestad RB; Britton J; Itano WM; Jost JD; Knill E; Langer C; Ozeri R; Wineland DJ
    Nature; 2004 Dec; 432(7017):602-5. PubMed ID: 15577904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental Demonstration of Fault-Tolerant State Preparation with Superconducting Qubits.
    Takita M; Cross AW; Córcoles AD; Chow JM; Gambetta JM
    Phys Rev Lett; 2017 Nov; 119(18):180501. PubMed ID: 29219563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Error-Transparent Quantum Gates for Small Logical Qubit Architectures.
    Kapit E
    Phys Rev Lett; 2018 Feb; 120(5):050503. PubMed ID: 29481172
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct quantum process tomography via measuring sequential weak values of incompatible observables.
    Kim Y; Kim YS; Lee SY; Han SW; Moon S; Kim YH; Cho YW
    Nat Commun; 2018 Jan; 9(1):192. PubMed ID: 29335489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental implementation of encoded logical qubit operations in a perfect quantum error correcting code.
    Zhang J; Laflamme R; Suter D
    Phys Rev Lett; 2012 Sep; 109(10):100503. PubMed ID: 23005271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Digital System Design for Quantum Error Correction Codes.
    Khalifa OO; Amirah Bt Sharif N; Saeed RA; Abdel-Khalek S; Alharbi AN; Alkathiri AA
    Contrast Media Mol Imaging; 2021; 2021():1101911. PubMed ID: 34992507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards Realistic Implementations of a Majorana Surface Code.
    Landau LA; Plugge S; Sela E; Altland A; Albrecht SM; Egger R
    Phys Rev Lett; 2016 Feb; 116(5):050501. PubMed ID: 26894694
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Implementing a strand of a scalable fault-tolerant quantum computing fabric.
    Chow JM; Gambetta JM; Magesan E; Abraham DW; Cross AW; Johnson BR; Masluk NA; Ryan CA; Smolin JA; Srinivasan SJ; Steffen M
    Nat Commun; 2014 Jun; 5():4015. PubMed ID: 24958160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detecting bit-flip errors in a logical qubit using stabilizer measurements.
    Ristè D; Poletto S; Huang MZ; Bruno A; Vesterinen V; Saira OP; DiCarlo L
    Nat Commun; 2015 Apr; 6():6983. PubMed ID: 25923318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coherent feedback control of a single qubit in diamond.
    Hirose M; Cappellaro P
    Nature; 2016 Apr; 532(7597):77-80. PubMed ID: 27078567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The power of a control qubit in weak measurements.
    Coto R; Montenegro V; Eremeev V; Mundarain D; Orszag M
    Sci Rep; 2017 Jul; 7(1):6351. PubMed ID: 28743972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Device-Independent Certification of a Nonprojective Qubit Measurement.
    Gómez ES; Gómez S; González P; Cañas G; Barra JF; Delgado A; Xavier GB; Cabello A; Kleinmann M; Vértesi T; Lima G
    Phys Rev Lett; 2016 Dec; 117(26):260401. PubMed ID: 28059533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient and robust estimation of many-qubit Hamiltonians.
    Stilck França D; Markovich LA; Dobrovitski VV; Werner AH; Borregaard J
    Nat Commun; 2024 Jan; 15(1):311. PubMed ID: 38191453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.