These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 32910129)

  • 1. Channel innovations for inertial microfluidics.
    Tang W; Zhu S; Jiang D; Zhu L; Yang J; Xiang N
    Lab Chip; 2020 Oct; 20(19):3485-3502. PubMed ID: 32910129
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inertial microfluidics: Recent advances.
    Huang D; Man J; Jiang D; Zhao J; Xiang N
    Electrophoresis; 2020 Dec; 41(24):2166-2187. PubMed ID: 33027533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fundamentals and applications of inertial microfluidics: a review.
    Zhang J; Yan S; Yuan D; Alici G; Nguyen NT; Ebrahimi Warkiani M; Li W
    Lab Chip; 2016 Jan; 16(1):10-34. PubMed ID: 26584257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Review of Secondary Flow in Inertial Microfluidics.
    Zhao Q; Yuan D; Zhang J; Li W
    Micromachines (Basel); 2020 Apr; 11(5):. PubMed ID: 32354106
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent progress of inertial microfluidic-based cell separation.
    Xu X; Huang X; Sun J; Wang R; Yao J; Han W; Wei M; Chen J; Guo J; Sun L; Yin M
    Analyst; 2021 Nov; 146(23):7070-7086. PubMed ID: 34761757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PDMS-Parylene Hybrid, Flexible Microfluidics for Real-Time Modulation of 3D Helical Inertial Microfluidics.
    Jung BJ; Kim J; Kim JA; Jang H; Seo S; Lee W
    Micromachines (Basel); 2018 May; 9(6):. PubMed ID: 30424188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fundamentals of elasto-inertial particle focusing in curved microfluidic channels.
    Xiang N; Zhang X; Dai Q; Cheng J; Chen K; Ni Z
    Lab Chip; 2016 Jul; 16(14):2626-35. PubMed ID: 27300118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Progress of Inertial Microfluidics in Principle and Application.
    Gou Y; Jia Y; Wang P; Sun C
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29857563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inertial microfluidics in contraction-expansion microchannels: A review.
    Jiang D; Ni C; Tang W; Huang D; Xiang N
    Biomicrofluidics; 2021 Jul; 15(4):041501. PubMed ID: 34262632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of Lagrangian Modeling of Particle Motion in a Spiral Microchannel for Inertial Microfluidics.
    Rasooli R; Çetin B
    Micromachines (Basel); 2018 Aug; 9(9):. PubMed ID: 30424366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inertial microfluidic physics.
    Amini H; Lee W; Di Carlo D
    Lab Chip; 2014 Aug; 14(15):2739-61. PubMed ID: 24914632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Particle focusing mechanisms in curving confined flows.
    Gossett DR; Di Carlo D
    Anal Chem; 2009 Oct; 81(20):8459-65. PubMed ID: 19761190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inertial Microfluidics Enabling Clinical Research.
    Kalyan S; Torabi C; Khoo H; Sung HW; Choi SE; Wang W; Treutler B; Kim D; Hur SC
    Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33802356
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A review on inertial microfluidic fabrication methods.
    Akbari Z; Raoufi MA; Mirjalali S; Aghajanloo B
    Biomicrofluidics; 2023 Sep; 17(5):051504. PubMed ID: 37869745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamically tunable elasto-inertial particle focusing and sorting in microfluidics.
    Zhou Y; Ma Z; Ai Y
    Lab Chip; 2020 Feb; 20(3):568-581. PubMed ID: 31894813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inertial microfluidics for high-throughput cell analysis and detection: a review.
    Zhou Z; Chen Y; Zhu S; Liu L; Ni Z; Xiang N
    Analyst; 2021 Oct; 146(20):6064-6083. PubMed ID: 34490431
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oscillatory inertial focusing in infinite microchannels.
    Mutlu BR; Edd JF; Toner M
    Proc Natl Acad Sci U S A; 2018 Jul; 115(30):7682-7687. PubMed ID: 29991599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elasto-inertial particle focusing in sinusoidal microfluidic channels.
    Chen D; Huang Q; Ni Z; Xiang N
    Electrophoresis; 2024 May; ():. PubMed ID: 38813845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tuning particle inertial separation in sinusoidal channels by embedding periodic obstacle microstructures.
    Cha H; Fallahi H; Dai Y; Yadav S; Hettiarachchi S; McNamee A; An H; Xiang N; Nguyen NT; Zhang J
    Lab Chip; 2022 Jul; 22(15):2789-2800. PubMed ID: 35587546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dean-flow-coupled elasto-inertial three-dimensional particle focusing under viscoelastic flow in a straight channel with asymmetrical expansion-contraction cavity arrays.
    Yuan D; Zhang J; Yan S; Pan C; Alici G; Nguyen NT; Li WH
    Biomicrofluidics; 2015 Jul; 9(4):044108. PubMed ID: 26339309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.