These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
326 related articles for article (PubMed ID: 32910169)
1. Meta-i6mA: an interspecies predictor for identifying DNA N6-methyladenine sites of plant genomes by exploiting informative features in an integrative machine-learning framework. Hasan MM; Basith S; Khatun MS; Lee G; Manavalan B; Kurata H Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32910169 [TBL] [Abstract][Full Text] [Related]
2. i6mA-Fuse: improved and robust prediction of DNA 6 mA sites in the Rosaceae genome by fusing multiple feature representation. Hasan MM; Manavalan B; Shoombuatong W; Khatun MS; Kurata H Plant Mol Biol; 2020 May; 103(1-2):225-234. PubMed ID: 32140819 [TBL] [Abstract][Full Text] [Related]
3. i6mA-Vote: Cross-Species Identification of DNA N6-Methyladenine Sites in Plant Genomes Based on Ensemble Learning With Voting. Teng Z; Zhao Z; Li Y; Tian Z; Guo M; Lu Q; Wang G Front Plant Sci; 2022; 13():845835. PubMed ID: 35237293 [TBL] [Abstract][Full Text] [Related]
4. i6mA-Caps: a CapsuleNet-based framework for identifying DNA N6-methyladenine sites. Rehman MU; Tayara H; Zou Q; Chong KT Bioinformatics; 2022 Aug; 38(16):3885-3891. PubMed ID: 35771648 [TBL] [Abstract][Full Text] [Related]
5. i6mA-Pred: identifying DNA N6-methyladenine sites in the rice genome. Chen W; Lv H; Nie F; Lin H Bioinformatics; 2019 Aug; 35(16):2796-2800. PubMed ID: 30624619 [TBL] [Abstract][Full Text] [Related]
6. i6mA-stack: A stacking ensemble-based computational prediction of DNA N6-methyladenine (6mA) sites in the Rosaceae genome. Khanal J; Lim DY; Tayara H; Chong KT Genomics; 2021 Jan; 113(1 Pt 2):582-592. PubMed ID: 33010390 [TBL] [Abstract][Full Text] [Related]
7. i6mA-VC: A Multi-Classifier Voting Method for the Computational Identification of DNA N6-methyladenine Sites. Xue T; Zhang S; Qiao H Interdiscip Sci; 2021 Sep; 13(3):413-425. PubMed ID: 33834381 [TBL] [Abstract][Full Text] [Related]
8. i6mA-DNCP: Computational Identification of DNA Kong L; Zhang L Genes (Basel); 2019 Oct; 10(10):. PubMed ID: 31635172 [TBL] [Abstract][Full Text] [Related]
9. i4mC-ROSE, a bioinformatics tool for the identification of DNA N4-methylcytosine sites in the Rosaceae genome. Hasan MM; Manavalan B; Khatun MS; Kurata H Int J Biol Macromol; 2020 Aug; 157():752-758. PubMed ID: 31805335 [TBL] [Abstract][Full Text] [Related]
10. Ense-i6mA: Identification of DNA N6-methyl-adenine Sites Using XGB-RFE Feature Se-lection and Ensemble Machine Learning. Fan XQ; Lin B; Hu J; Guo ZY IEEE/ACM Trans Comput Biol Bioinform; 2024 Jul; PP():. PubMed ID: 38949938 [TBL] [Abstract][Full Text] [Related]
11. Critical evaluation of web-based DNA N6-methyladenine site prediction tools. Hasan MM; Shoombuatong W; Kurata H; Manavalan B Brief Funct Genomics; 2021 Jul; 20(4):258-272. PubMed ID: 33491072 [TBL] [Abstract][Full Text] [Related]
12. Deep6mA: A deep learning framework for exploring similar patterns in DNA N6-methyladenine sites across different species. Li Z; Jiang H; Kong L; Chen Y; Lang K; Fan X; Zhang L; Pian C PLoS Comput Biol; 2021 Feb; 17(2):e1008767. PubMed ID: 33600435 [TBL] [Abstract][Full Text] [Related]
13. SDM6A: A Web-Based Integrative Machine-Learning Framework for Predicting 6mA Sites in the Rice Genome. Basith S; Manavalan B; Shin TH; Lee G Mol Ther Nucleic Acids; 2019 Dec; 18():131-141. PubMed ID: 31542696 [TBL] [Abstract][Full Text] [Related]
14. A convolution based computational approach towards DNA N6-methyladenine site identification and motif extraction in rice genome. Rahman CR; Amin R; Shatabda S; Toaha MSI Sci Rep; 2021 May; 11(1):10357. PubMed ID: 33990665 [TBL] [Abstract][Full Text] [Related]
15. iDNA6mA-Rice-DL: A local web server for identifying DNA N6-methyladenine sites in rice genome by deep learning method. He S; Kong L; Chen J J Bioinform Comput Biol; 2021 Oct; 19(5):2150019. PubMed ID: 34291710 [TBL] [Abstract][Full Text] [Related]
16. UbNiRF: A Hybrid Framework Based on Null Importances and Random Forest that Combines Multiple Features to Predict Ubiquitination Sites in Li X; Yuan Z; Chen Y Front Biosci (Landmark Ed); 2024 May; 29(5):197. PubMed ID: 38812315 [TBL] [Abstract][Full Text] [Related]
17. iN6-methylat (5-step): identifying DNA N Le NQK Mol Genet Genomics; 2019 Oct; 294(5):1173-1182. PubMed ID: 31055655 [TBL] [Abstract][Full Text] [Related]
18. Using k-mer embeddings learned from a Skip-gram based neural network for building a cross-species DNA N6-methyladenine site prediction model. Nguyen TTD; Trinh VN; Le NQK; Ou YY Plant Mol Biol; 2021 Dec; 107(6):533-542. PubMed ID: 34843033 [TBL] [Abstract][Full Text] [Related]
19. A Bioinformatics Tool for the Prediction of DNA N6-Methyladenine Modifications Based on Feature Fusion and Optimization Protocol. Cai J; Wang D; Chen R; Niu Y; Ye X; Su R; Xiao G; Wei L Front Bioeng Biotechnol; 2020; 8():502. PubMed ID: 32582654 [TBL] [Abstract][Full Text] [Related]
20. iDNA6mA-Rice: A Computational Tool for Detecting N6-Methyladenine Sites in Rice. Lv H; Dao FY; Guan ZX; Zhang D; Tan JX; Zhang Y; Chen W; Lin H Front Genet; 2019; 10():793. PubMed ID: 31552096 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]