BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 32910282)

  • 21. Inhibiting O-GlcNAcylation impacts p38 and Erk1/2 signaling and perturbs cardiomyocyte hypertrophy.
    Papanicolaou KN; Jung J; Ashok D; Zhang W; Modaressanavi A; Avila E; Foster DB; Zachara NE; O'Rourke B
    J Biol Chem; 2023 Mar; 299(3):102907. PubMed ID: 36642184
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pharmacoresistant Cav 2·3 (E-type/R-type) voltage-gated calcium channels influence heart rate dynamics and may contribute to cardiac impulse conduction.
    Galetin T; Tevoufouet EE; Sandmeyer J; Matthes J; Nguemo F; Hescheler J; Weiergräber M; Schneider T
    Cell Biochem Funct; 2013 Jul; 31(5):434-49. PubMed ID: 23086800
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Basal and β-adrenergic regulation of the cardiac calcium channel CaV1.2 requires phosphorylation of serine 1700.
    Fu Y; Westenbroek RE; Scheuer T; Catterall WA
    Proc Natl Acad Sci U S A; 2014 Nov; 111(46):16598-603. PubMed ID: 25368181
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phosphodiesterase 8A (PDE8A) regulates excitation-contraction coupling in ventricular myocytes.
    Patrucco E; Albergine MS; Santana LF; Beavo JA
    J Mol Cell Cardiol; 2010 Aug; 49(2):330-3. PubMed ID: 20353794
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cardiac O-GlcNAc signaling is increased in hypertrophy and heart failure.
    Lunde IG; Aronsen JM; Kvaløy H; Qvigstad E; Sjaastad I; Tønnessen T; Christensen G; Grønning-Wang LM; Carlson CR
    Physiol Genomics; 2012 Feb; 44(2):162-72. PubMed ID: 22128088
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rad as a novel regulator of excitation-contraction coupling and beta-adrenergic signaling in heart.
    Wang G; Zhu X; Xie W; Han P; Li K; Sun Z; Wang Y; Chen C; Song R; Cao C; Zhang J; Wu C; Liu J; Cheng H
    Circ Res; 2010 Feb; 106(2):317-27. PubMed ID: 19926875
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Exchange protein directly activated by cAMP mediates slow delayed-rectifier current remodeling by sustained β-adrenergic activation in guinea pig hearts.
    Aflaki M; Qi XY; Xiao L; Ordog B; Tadevosyan A; Luo X; Maguy A; Shi Y; Tardif JC; Nattel S
    Circ Res; 2014 Mar; 114(6):993-1003. PubMed ID: 24508724
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of regular exercise on ventricular myocyte biomechanics and K
    Wang X; Fitts RH
    Am J Physiol Heart Circ Physiol; 2018 Oct; 315(4):H885-H896. PubMed ID: 30074836
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Compartmentalized β1-adrenergic signalling synchronizes excitation-contraction coupling without modulating individual Ca2+ sparks in healthy and hypertrophied cardiomyocytes.
    Yang HQ; Zhou P; Wang LP; Zhao YT; Ren YJ; Guo YB; Xu M; Wang SQ
    Cardiovasc Res; 2020 Nov; 116(13):2069-2080. PubMed ID: 32031586
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Adenylyl cyclase subtype-specific compartmentalization: differential regulation of L-type Ca2+ current in ventricular myocytes.
    Timofeyev V; Myers RE; Kim HJ; Woltz RL; Sirish P; Heiserman JP; Li N; Singapuri A; Tang T; Yarov-Yarovoy V; Yamoah EN; Hammond HK; Chiamvimonvat N
    Circ Res; 2013 Jun; 112(12):1567-76. PubMed ID: 23609114
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sustained Increases in Cardiomyocyte Protein
    Ha CM; Bakshi S; Brahma MK; Potter LA; Chang SF; Sun Z; Benavides GA; He L; Umbarkar P; Zou L; Curfman S; Sunny S; Paterson AJ; Rajasekaran NS; Barnes JW; Zhang J; Lal H; Xie M; Darley-Usmar VM; Chatham JC; Wende AR
    J Am Heart Assoc; 2023 Oct; 12(19):e029898. PubMed ID: 37750556
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Diabetes and the accompanying hyperglycemia impairs cardiomyocyte calcium cycling through increased nuclear O-GlcNAcylation.
    Clark RJ; McDonough PM; Swanson E; Trost SU; Suzuki M; Fukuda M; Dillmann WH
    J Biol Chem; 2003 Nov; 278(45):44230-7. PubMed ID: 12941958
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phosphorylation of the ryanodine receptor 2 at serine 2030 is required for a complete β-adrenergic response.
    Potenza DM; Janicek R; Fernandez-Tenorio M; Camors E; Ramos-Mondragón R; Valdivia HH; Niggli E
    J Gen Physiol; 2019 Feb; 151(2):131-145. PubMed ID: 30541771
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sustained beta-adrenergic stimulation increased L-type Ca2+ channel expression in cultured quiescent ventricular myocytes.
    Akuzawa-Tateyama M; Tateyama M; Ochi R
    J Physiol Sci; 2006 Apr; 56(2):165-72. PubMed ID: 16839451
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Functional coupling between glycolysis and excitation-contraction coupling underlies alternans in cat heart cells.
    Hüser J; Wang YG; Sheehan KA; Cifuentes F; Lipsius SL; Blatter LA
    J Physiol; 2000 May; 524 Pt 3(Pt 3):795-806. PubMed ID: 10790159
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reduced hybrid/complex N-glycosylation disrupts cardiac electrical signaling and calcium handling in a model of dilated cardiomyopathy.
    Ednie AR; Parrish AR; Sonner MJ; Bennett ES
    J Mol Cell Cardiol; 2019 Jul; 132():13-23. PubMed ID: 31071333
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Calmodulin kinase II inhibitor regulates calcium homeostasis changes caused by acute β-adrenergic receptor agonist stimulation in mouse ventricular myocytes.
    Huang Y; Liu T; Wang D; Wang X; Li R; Chen Y; Tang Y; Wang T; Huang C
    In Vitro Cell Dev Biol Anim; 2016 Feb; 52(2):156-62. PubMed ID: 26542171
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spatiotemporal dynamics of beta-adrenergic cAMP signals and L-type Ca2+ channel regulation in adult rat ventricular myocytes: role of phosphodiesterases.
    Leroy J; Abi-Gerges A; Nikolaev VO; Richter W; Lechêne P; Mazet JL; Conti M; Fischmeister R; Vandecasteele G
    Circ Res; 2008 May; 102(9):1091-100. PubMed ID: 18369156
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Swim-exercised mice show a decreased level of protein O-GlcNAcylation and expression of O-GlcNAc transferase in heart.
    Belke DD
    J Appl Physiol (1985); 2011 Jul; 111(1):157-62. PubMed ID: 21493720
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Regulation of the inositol 1,4,5-trisphosphate receptor type I by O-GlcNAc glycosylation.
    Rengifo J; Gibson CJ; Winkler E; Collin T; Ehrlich BE
    J Neurosci; 2007 Dec; 27(50):13813-21. PubMed ID: 18077693
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.